
CS4311 Design and Analysis of Algorithms

Homework 1 (Solution Sketch)

1. (a) We shall find the position using the binary search strategy. Let B denote the array
after John’s modification, and let x = B[1] denote the value of its first element. Thus
for any entry B[j], we have B[j] < x if and only if this entry belongs to Aleft.

Our target is to find which entry of B corresponds to the beginning of Aleft. We shall
first compare the middle element B[m] of B with x. In case B[m] is smaller than x,
we can deduce that the target entry is in the subarray B[1..m] so that we recursively
search for such element in B[1..m]. Otherwise, we can deduce that the target entry is
in the subarray B[m+1..n] and we recursively search for such element in B[m+1..n].

After each step, the problem size (number of entries to be searched) is reduced by half,
so that the search will stop after O(log n) steps. Thus, the running time is O(log n).

(b) The correctness of this algorithm follows from the following statement (why?), which
can be shown easily by induction (how?): After each step, the subarray to be searched
must contain the target entry.

2. (a) By examining the code, we see that the value of count is equal to either 0 or 1. More
precisely, it is 0 if the number of factors of n is an even number, and 1 otherwise.
By our high school mathematics, n has an even number of factors if and only if n
is not a perfect square. (The reason is: For each factor x smaller than

√
n, there

is a distinct factor, n/x, larger than
√

n. Thus, the number of factors smaller than√
n is exactly equal to the number of factors larger than

√
n. This implies that the

number of factors is an even number, unless
√

n happens to be an integer; in such
case, n = (

√
n)2 is a perfect square.)

Thus, to compute count is equivalent to checking whether n is a perfect square or not.
(If so, we return 1. Otherwise, we return 0.) To solve the latter problem, our method
is to find the largest integer j ∈ [1, n] such that j2 ≤ n by the binary search strategy.
Then if j2 = n, n must be a perfect square; else, we must have j2 < n < (j + 1)2 so
that n is not a perfect square.

We start with the middle element m, m = dn/2e, and check if m2 < n. If so, we can
deduce that j < m so that we recursively search [1, m− 1]. Otherwise, we can deduce
that j ≥ m so that we recursively search [m,n].

After each step, the problem size (number of entries to be searched) is reduced by half,
so that the search will stop after O(log n) steps. Thus, the running time is O(log n).

(b) The correctness of this algorithm follows from the following statement (why?), which
can be shown easily by induction (how?): After each step, the subarray to be searched
must contain the target j.

3. (a) The correctness of this algorithm follows from the following statement (why?), which
can be shown easily by induction (how?): After the kth phase, the k largest elements
are in the correct positions.

(b) Each swap can remove at most 1 inverted pair. Since the final output (sorted sequence)
does not contain any inverted pairs, we must have: # of swaps ≥ # of inverted pairs.

After a swap, an inverted pair formed by the swapping entries disappear; moreover,
after a swap, no new inverted pair can be created. Thus each swap must correspond
to an original inverted pair, so that we must have: # of swaps ≤ # of inverted pairs.

In summary, # of swaps = # of inverted pairs.

1



(c) The number of inverted pairs can be counted by a modified version of merge sort.
Consider dividing the an array B into the left half Bleft and the right half Bright.
We say an inverted pair is crossing if one element is from Bleft and the other is from
Bright. We have two key observations.

Observation 1: The number of crossing inverted pairs remains the same even if Bleft

and Bright both are sorted (why?).

Observation 2: If Bleft and Bright are sorted, counting the crossing inverted pairs
can be done at the same time when we merge Bleft and Bright. This can be done in
linear time (how?).

Based on these observations, we shall design a function, called “sort-and-count” for
any array B, which sorts B and count the inverted pairs in B as follows:

i. recursively sort-and-count Bleft;

ii. recursively sort-and-count Bright;

iii. merge Bleft and Bright and count the crossing inverted pairs;

iv. return the sum of the inverted pairs counted by (i), (ii), and (iii).

We can show by induction on i that the above algorithm correctly sorts any array
and counts its inverted pairs, where i is the length of the array.

Let T (n) denote the running time of the above algorithm. Thus, we have T (n) =
2T (n/2) + Θ(n), and hence T (n) = Θ(n log n) by Master Theorem.

2


