
CS4311 Design and Analysis of Algorithms

Homework 1

Due: 11:10 am, March 12, 2009 (before class)

1. You have just finished sorting an array A[1..n] of n distinct numbers into increasing order.
When you go out to have a break, your mischievous friend, John, has divided your array
into two parts Aleft = A[1..i] and Aright = A[i + 1..n], and re-arrange the array so that he
puts Aright in front of Aleft ; precisely, the array now becomes A[i+1..n]A[1..i]. See Figure 1
for an example.

Aleft Aright Aright Aleft

min item

Figure 1: John’s modification to the array.

After you come back, John tells you about what he has done, but without telling you the
value of i. To reverse the change, you want to locate the entry with the minimum item, as
this will be the boundary between Aright and Aleft .

(a) (15%) Design an O(log n)-time algorithm to find the position of the minimum item.

(b) (15%) Show that your algorithm is correct.

2. Consider the following code ComputeCount:

ComputeCount()

1. Input a positive integer n;

2. Set count = 0;

2. for j = 1, 2, . . . , n

3. if j is a factor of n

4. { Update count to become 1 - count; }
5. Output count;

(a) (15%) The above code computes the value of count in Θ(n) time. Design a faster
algorithm that can compute count, and analyze its running time.

• For this problem, the marks will also depend on the quality of your algorithm.
At most 15% if your algorithm runs in O(log n) time; otherwise, at most 5% if it
runs in o(n) time, and 0% if it runs in Θ(n) time.

(b) (15%) Explain why your algorithm is correct.

1



3. The BubbleSort algorithm is a very simple algorithm for sorting an array of numbers.
Given an input array A[1..n] with n distinct numbers, BubbleSort works by repeatedly
swapping adjacent elements in A as follows:

BubbleSort(A)

1. for Phase k = 1, 2, . . . , n

2. for Position j = 1, 2, . . . , n− 1

3. if A[j] > A[j + 1]

4. { Swap the entries A[j] and A[j + 1]; }

(a) (15%) Show that BubbleSort is correct.

(b) Consider the original array A[1..n]. We say a pair (A[i], A[j]) is inverted if i < j and
A[i] > A[j]. Intuitively, A[i] should be on the right of A[j] when the array is sorted,
but it is currently on the left of A[j].

• For example, if the array is 〈2, 3, 6, 4, 0〉, then the pair (3,0) is inverted, and in
total there are 5 inverted pairs.

(15%) Show that the number of inverted pairs in A is exactly equal to the number of
swaps when we perform BubbleSort on A.

** (c) (10%) By using brute force approach, one can easily count the number of inverted
pairs of A in Θ(n2) time. Design an algorithm that counts the number of inverted
pairs in O(n log n) time.

** Q3(c) is the hardest question. Spend more time and try your best to solve it!

4. (No marks.) Give asymptotic upper bound for T (n) in each of the following recurrence.
Make your bounds as tight as possible.

(a) T (n) = 9 T (n/2) + n3

(b) T (n) = 7 T (n/2) + n3

(c) T (n) = T (
√

n) + log n

(d) T (n) = 0.5 T (n/2) + n

(e) T (n) = 3 T (n/3) + n/3

2


