
Tail Recursion

Speaker : MARK



What is in-place algorithm?

 Algorithm that uses O(1) extra space in
addition to the original input

 How about Quicksort ?
 Quicksort has in-place partition
 Then, Quicksort is in-place algorithm ? NO !!



Quicksort

In-place !

In-place ?



Quicksort needs stack

1 3 7 8 2 6 4 5

1 3 7 82 64 5

after partition

Qsort(A,1,4) Qsort(A,6,8)

STACK

Q(1,8)

Q(1,4),Q(6,8)



Quicksort needs stack (cont.)

1 3 7 82 64 5

after partition

Qsort(A,1,3) Qsort(A,6,7)

STACK

Q(1,8)

Q(1,4),Q(6,8)

Q(1,3),Q(6,7)
1 3 7 82 64 5



Worst Case Space

1 2 3 4 5 6 7 8
STACK

Q(1,8)

Q(1,7)

Q(1,6)

…

Q(1,1)

STACK size =
O(n) entries

Can we use less space ?



Method I

P

while (length(Xi) > n/2)
partition again

X1 X2

STACK

Q(X3),Q(X4),Q(X2)
X3 X2P X4

until all length(Xi) < n/2



Method I (cont.)

STACK

Q(X3),Q(X4),Q(X2)

Q(X5),Q(X6),Q(X7)

…STACK size =
O(log n) entries

Is it good enough ?

No! Space of an entry may be
as large as O(n)



Method II

P

if (there is X with length(X) < n/2)
call Qsort(X)

else partition X into X’and X’’

X1 X2

STACK

Q(X2)

Q(X3)

Q(X4)

X3 X2P X4

until all X are processed



Method II (cont.)

STACK size =
O(log n) entries

Space of every entry is only O(1)

STACK

Q(X2)

Q(X3)

Q(X4)



Conclusion

 The idea of Method II is tail recursion
 First solves sub-problem with smaller size
 Call recursion only when sub-problem is small

enough

 Even with the improvement, Method II ’s
space complexity = input + O(log n)
 Still not in-place algorithm !!


