Taill Recursion

Speaker : MARK



What Is In-place algorithm?

» Algorithm that uses O(1) extra space In
addition to the original input

» How about Quicksort ?
» Quicksort has in-place partition
» Then, Quicksort is in-place algorithm ? NO !



Quicksort

The Quicksort algorithm works as follows:

Quicksort(Ap,r) /*tosortarray A[p..r] */

1. if(p=r) return;

2. q = Partition(Ap,r); %In-place !]
3. Qufcksor"r(A, p, p+q-1). In-place’a
4. Quicksort(A, p+q+1, r);




Quicksort needs stack
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Quicksort needs stack (cont.)
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Worst Case Space

1(2|3|4|5(6]|7]8 = TACK
Q(1,1)
STACK siz_e = 0(L6)
O(n) entries
Q(1,7)
Q(1,8)

Can we use less space ?



Method |
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Method | (cont.)
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O(log n) entries
QX5).QX).Q(X7)

Q(X 3) ’Q(X4) 1Q(X 2)

Is it good enough ?

No! Space of an entry may be
as large as O(n)



Method I

Xy

i

STACK

X,

If (there i1s X with length(X) < n/2)

call Qsort(X)

else partition X into X and X"

Q(X,)

Q(X,)

X3

X

X,

Q(X>)

until a

| X are processed




Method Il (cont.)
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Space of every entry is only O(1)



Conclusion

+» The idea of Method Il Is tail recursion
» FIrst solves sub-problem with smaller size

» Call recursion only when sub-problem is small
enough

» Even with the improvement, Method Il ’s
space complexity = input + O(log n)
» Still not Iin-place algorithm !!



