Taill Recursion

Speaker : MARK

What Is In-place algorithm?

» Algorithm that uses O(1) extra space In
addition to the original input

» How about Quicksort ?
» Quicksort has in-place partition
» Then, Quicksort is in-place algorithm ? NO !

Quicksort

The Quicksort algorithm works as follows:

Quicksort(Ap,r) /*tosortarray A[p..r] */

1. if(p=r) return;

2. q = Partition(Ap,r); %In-place !]
3. Qufcksor"r(A, p, p+q-1). In-place’a
4. Quicksort(A, p+q+1, r);

Quicksort needs stack

38

2

6

A4

3

i after partition

1

3

2

A

5

6

7

8

\

J

Qsort(A,1,4)

~

\

J

Qsort(A,6,8)

v

—

STACK

Q(1,4),Q(6.8)

Q(1,8)

Quicksort needs stack (cont.)

2 [l s

6

7 |83

\L after partition

1

3

\

2 [l s
)

Qsort(A,1,3)

Y

6

\

8
J
;

Qsort(A,6,7)

STACK

Q(1,3),Q(6,7)

Q(1,4),Q(6.8)

Q(1,8)

Worst Case Space

1(2|3|4|5(6]|7]8 = TACK
Q(1,1)
STACK siz_e = 0(L6)
O(n) entries
Q(1,7)
Q(1,8)

Can we use less space ?

Method |

Xy i

X,

STACK

while (length(X;) > n/2)

partition again

X3

X,

X,

until all length(X;) < n/2

Q(X 3) ’Q(X4) 1Q(X 2)

Method | (cont.)

STACK

STACK size =
O(log n) entries
QX5).QX).Q(X7)

Q(X 3) ’Q(X4) 1Q(X 2)

Is it good enough ?

No! Space of an entry may be
as large as O(n)

Method I

Xy

i

STACK

X,

If (there i1s X with length(X) < n/2)

call Qsort(X)

else partition X into X and X"

Q(X,)

Q(X,)

X3

X

X,

Q(X>)

until a

| X are processed

Method Il (cont.)

STACK

|: STACK size = :|7 Q(X,)
O(log n) entries o0

Q(X>)

Space of every entry is only O(1)

Conclusion

+» The idea of Method Il Is tail recursion
» FIrst solves sub-problem with smaller size

» Call recursion only when sub-problem is small
enough

» Even with the improvement, Method Il ’s
space complexity = input + O(log n)
» Still not Iin-place algorithm !!

