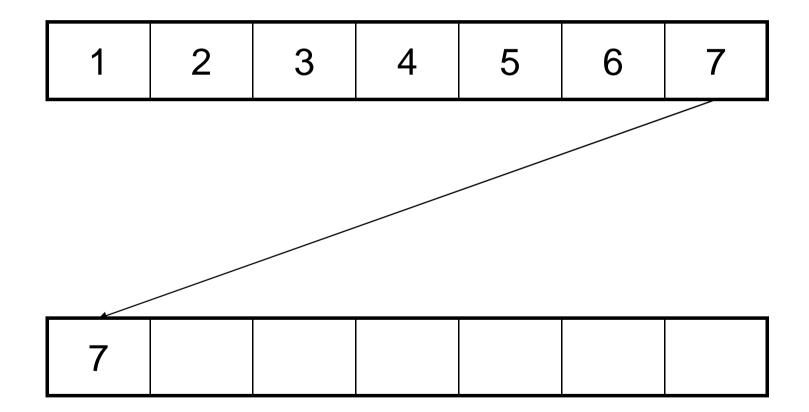
In-place Algorithm

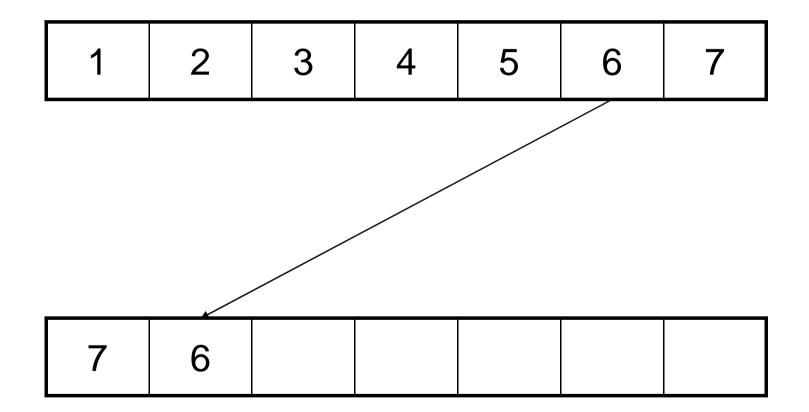
Motivation

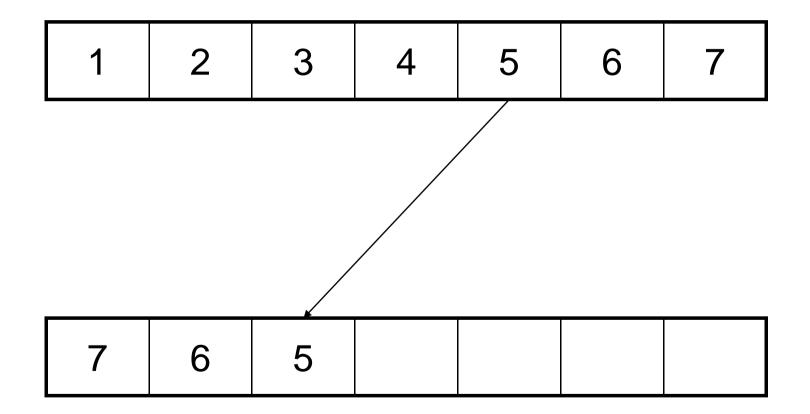
- Some devices don't have enough space
 - Embedded system like PDA, cell phone.....
- I/O spends much more time than calculation, and less space usually means fewer I/O
 - Database
- Reducing space usage is important

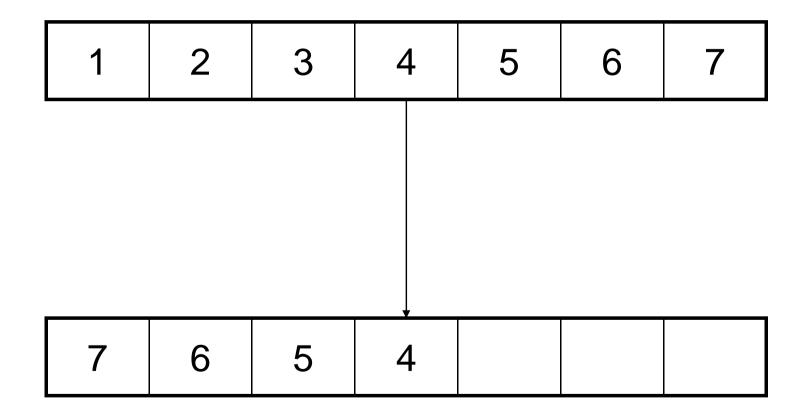
- Problem definition:
 - Given an array A[0..n]
 - Output the "reverse" of A
 - That is, output an array B[0..n] such that B[k] = A[n-k] for every k
 - In this problem, we are not required to keep A after the processing

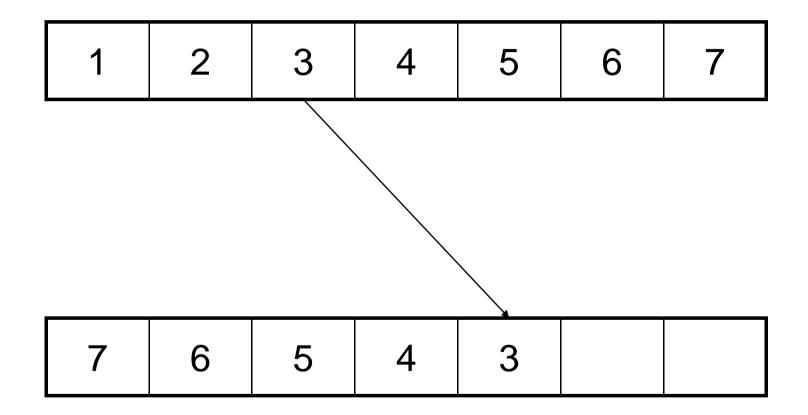
 Solution 1: Use a new array with size equal to the input array size

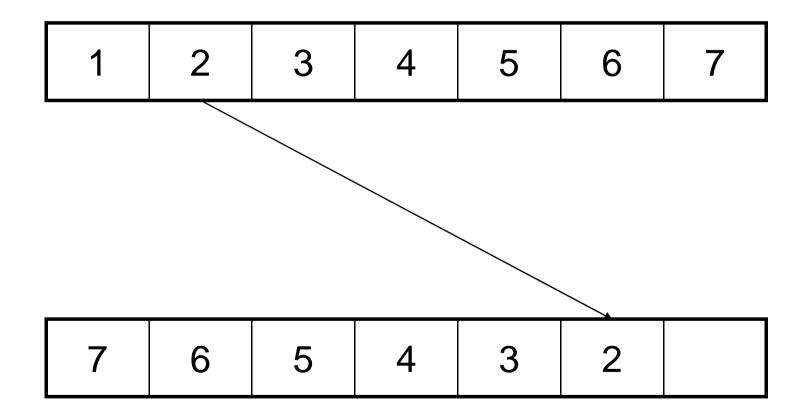


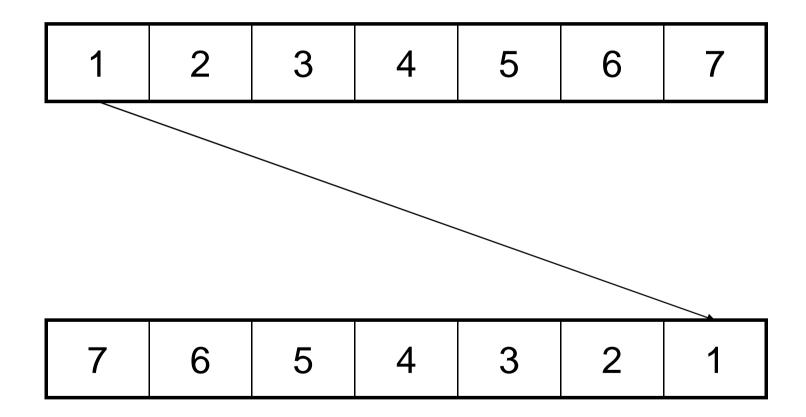








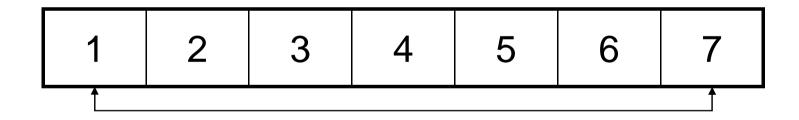


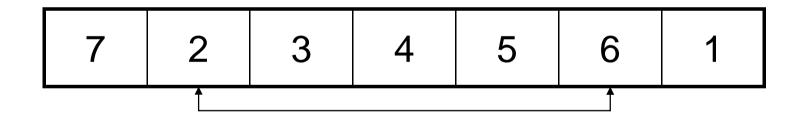


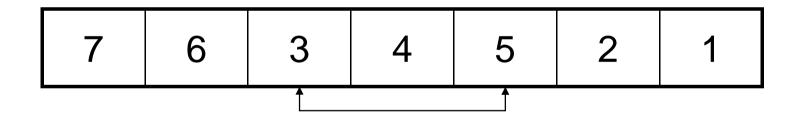
• Needs O(n) extra space

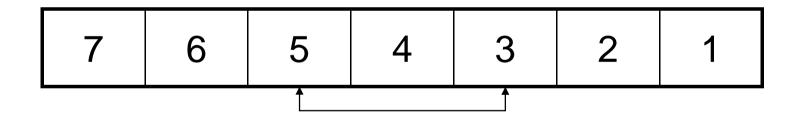
• Can we use less space?

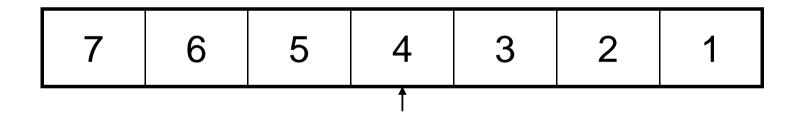
 Solution 2: Exchange the first and the last elements (inside A), and then serve the remaining list











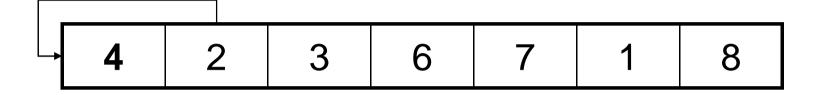
- Needs O(1) extra space
 - One for exchanging elements

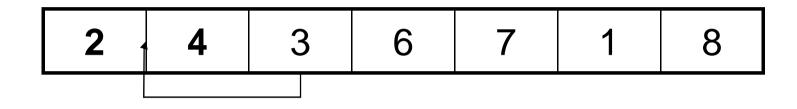
What is In-place Algorithm?

- Algorithm that uses a small constant amount of extra space in addition to the original input
- Usually overwrite the input space
 - Spend more time in some cases
- On the contrary: not-in-place or outof-place

More Examples

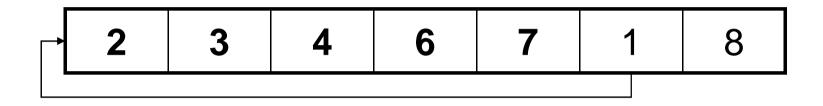
- Do we know any algorithms which are in-place?
 - Insertion sort
 - Selection sort







2 3	4	6	7	1	8
-----	---	---	---	---	---



1 2 3 4 6 7 8)
----------------------	---

1 2 3 4 6 7 8

- Only needs O(1) extra space
 - One for exchanging

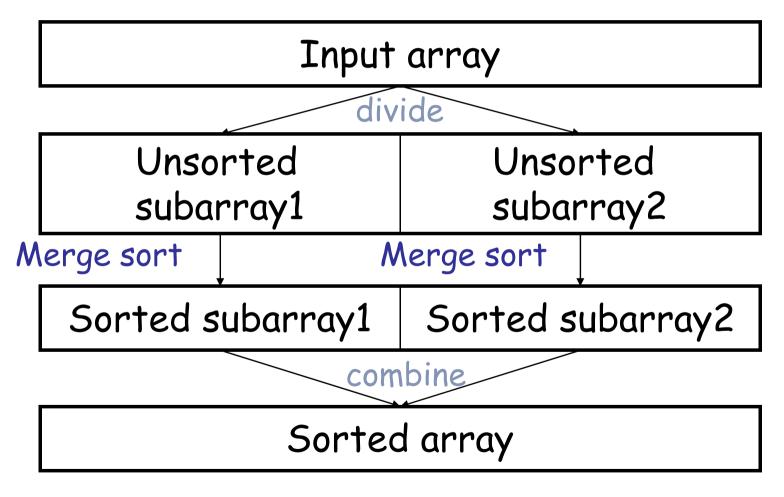
Selection Sort

- How about Selection Sort?
- Needs only O(1) extra space
 - For exchanging

Not-in-place Algorithm

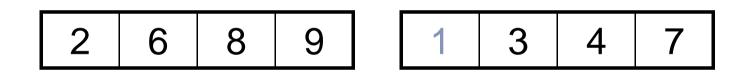
- Do we know any algorithms which are not-in-place?
 - Merge sort
 - \cdot O(n) extra space for merging

Simple Merge Sort



What's wrong in simple?

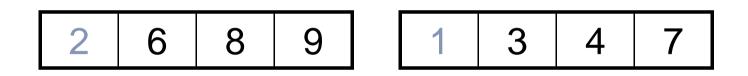
• In the merge step



4				
1				
-				

What's wrong in simple?

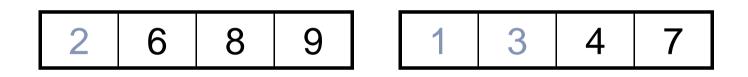
• In the merge step



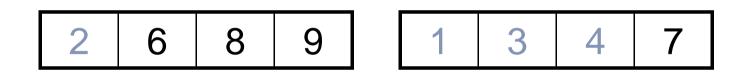
1	2			
-				

What's wrong in simple?

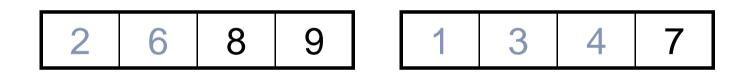
• In the merge step



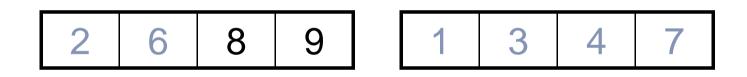
1	2	3					
---	---	---	--	--	--	--	--



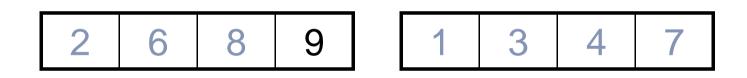
1	2	3	4				
---	---	---	---	--	--	--	--



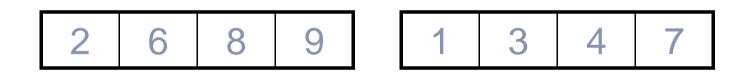
1	2	3	4	6			
---	---	---	---	---	--	--	--



1	2	3	4	6	7		
---	---	---	---	---	---	--	--



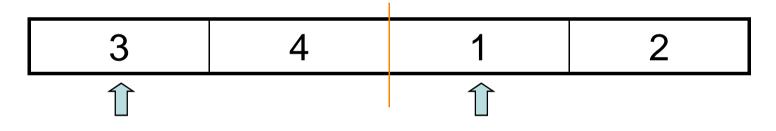
1 2 3	4	6	7	8	
-------	---	---	---	---	--

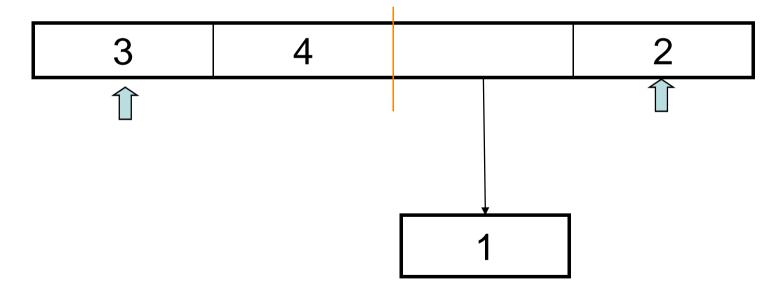


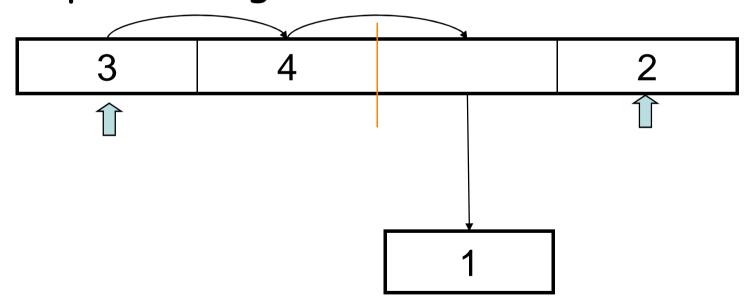
1	2	3	4	6	7	8	9
---	---	---	---	---	---	---	---

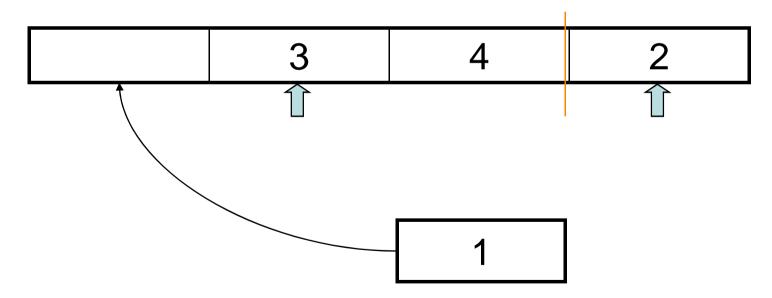
• In the merge step, needs O(n) extra space

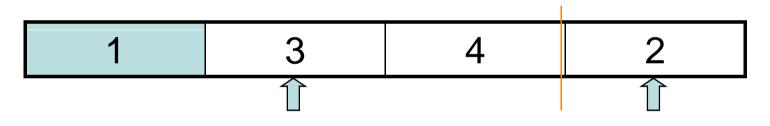
1	2	3	4	6	7	8	9
---	---	---	---	---	---	---	---

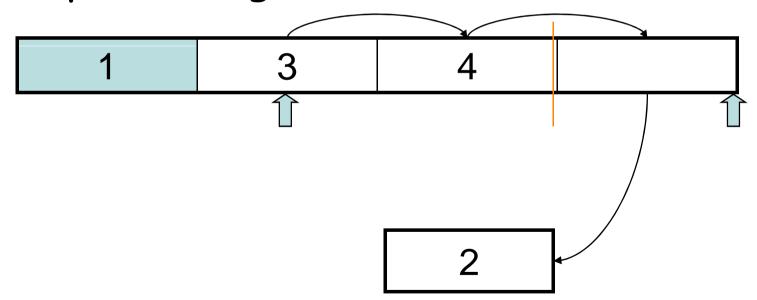


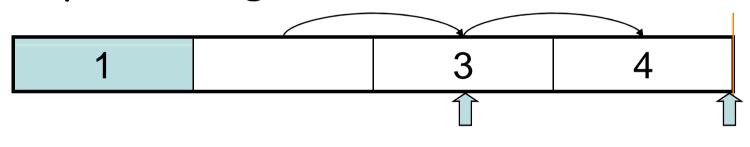


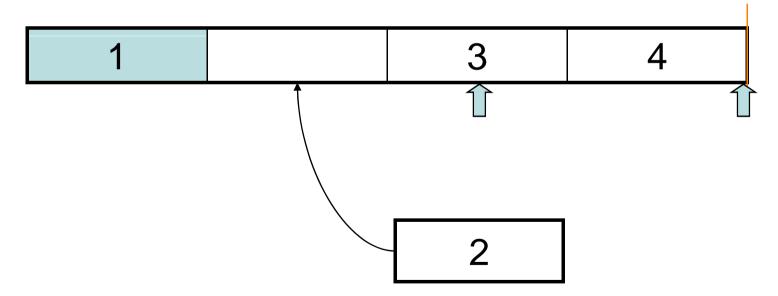


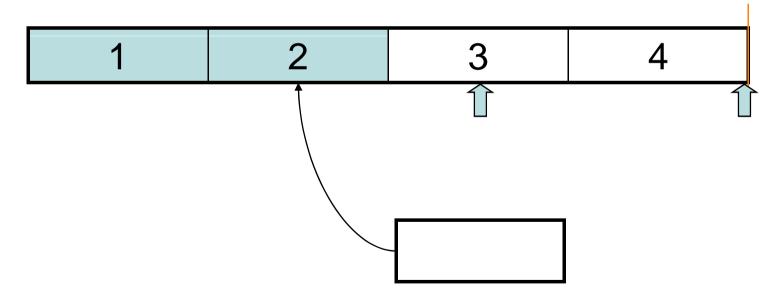


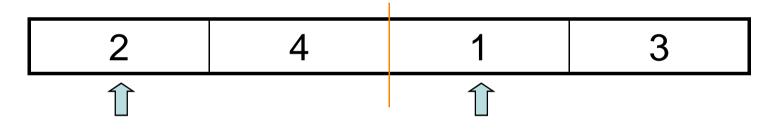


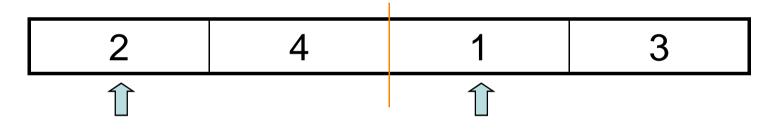


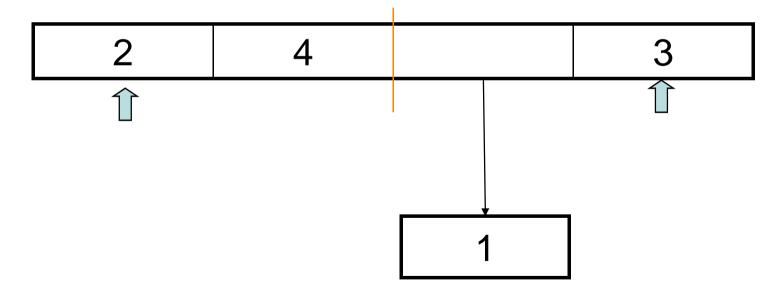


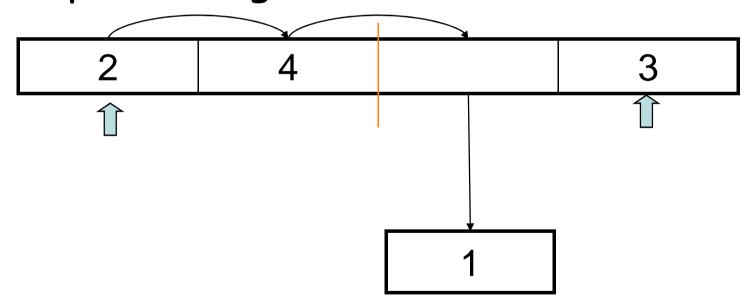




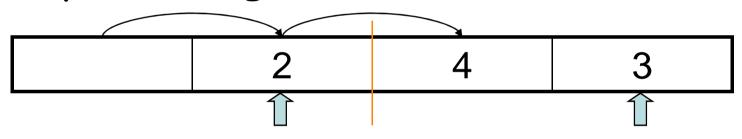




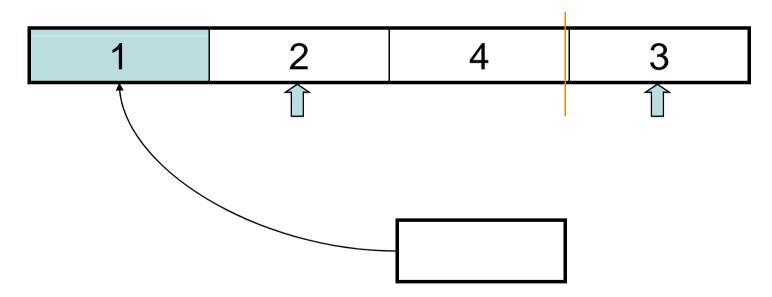


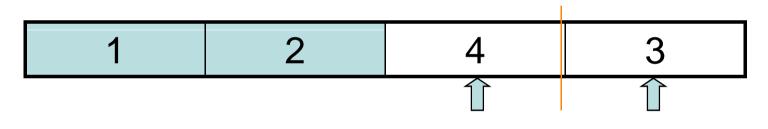


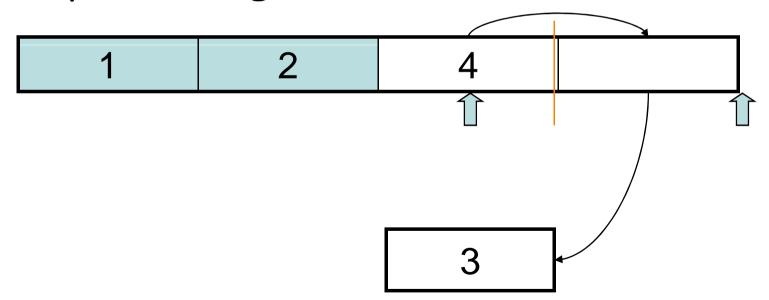
 We design a new function called "inplaceMerge"

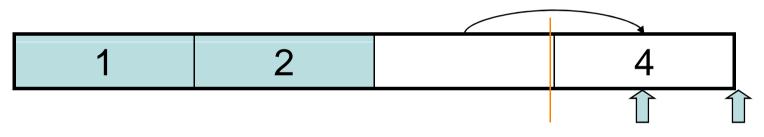


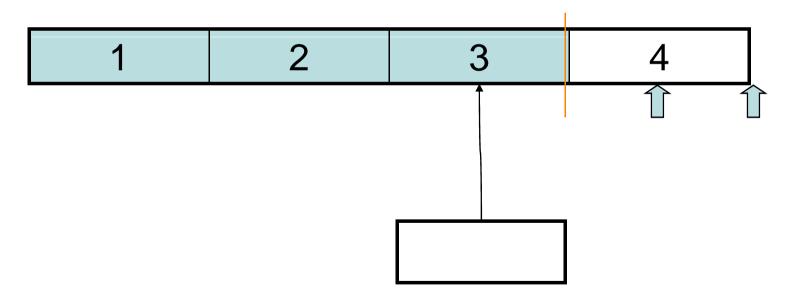
1

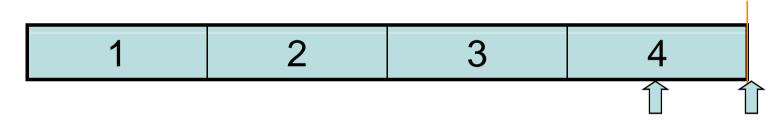












- We design a new function called "inplaceMerge"
- Time complexity of inplaceMerge:
 O(n²)

- Replace the merge function in simple merge with inplaceMerge
- Time complexity:

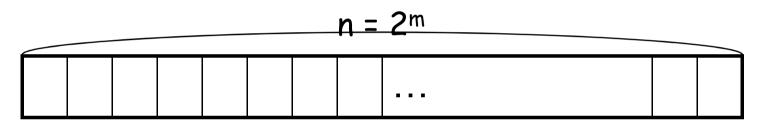
$$- T(n) = 2T(n/2) + n^2$$

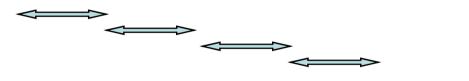
By Master theory, $T(n) = \Theta(n^2)$

- Replace the merge function in simple merge with inplaceMerge
- Is the algorithm an in-place algorithm?
 - NO, because we recurrently call function
 - It require O(log n) function call

In-place MergeSort

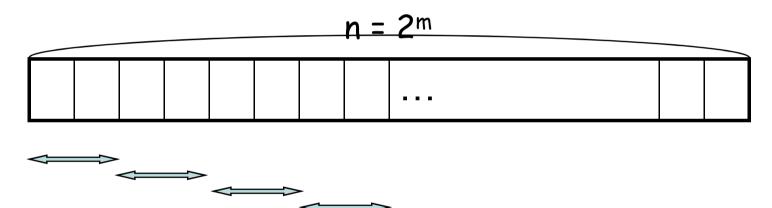
• So, we re-design the merge sort algorithm





In-place MergeSort

· So, we re-design the merge sort algorithm



In-place MergeSort

· So, we re-design the merge sort algorithm



In-place Merge Sort

- Time complexity: $n/2 * O(2^2) + n/4 * O(4^2) + ... + 1 * O(n^2)$ $= O(2n) + O(4n) + O(8n) + ... + O(n^2)$ $= O(n^2)$
 - still the same as MergeSort2, but avoid using O(log n) function calls

In-place Merge Sort

- Can we do better?
- In fact, there is an In-place Merge Sort algorithm that works faster, using only optimal O(n log n) time
 - The merging step is a bit complicated, so we do not introduce here ...