In-place Algorithm

Motivation

+ Some devices don't have enough space
- Embedded system like PDA, cell phone......
» I/0 spends much more time than

calculation, and less space usually
means fewer I/0

- Database
» Reducing space usage is important

Simple Reverse

* Problem definition:
- Given an array A[0O..n]

- Output the "reverse” of A

- That is, output an array B[0..n] such that
B[k] = A[n-k] for every k

- In this problem, we are not required to
keep A after the processing

Simple Reverse

» Solution 1: Use a hew array with size
equal to the input array size

Simple Reverse

2

3

A

5

6

Simple Reverse

2

3

A

5

6

Simple Reverse

2

3

A

5

6

Simple Reverse

2

3

A

5

6

Simple Reverse

2

3

A

5

6

Simple Reverse

2

3

A

5

6

Simple Reverse

2

3

A

5

6

Simple Reverse

* Needs O(n) extra space

» Can we use less space?

Smarter Reverse

» Solution 2: Exchange the first and
the last elements (inside A), and then
serve the remaining list

Smarter Reverse

Smarter Reverse

Smarter Reverse

Smarter Reverse

Smarter Reverse

Smarter Reverse

* Needs O(1) extra space
- One for exchanging elements

What is In-place Algorithm?

» Algorithm that uses a small constant
amount of extra space in addition to
the original input

» Usually overwrite the input space

- Spend more time in some cases

* On the contrary: not-in-place or out-
of-place

More Examples

* Do we know any algorithms which are
in-place?

- Insertion sort

- Selection sort

Insertion Sort

2

3

6

.

1

Insertion Sort

2

3

6

.

1

Insertion Sort

A

3

6

.

1

Insertion Sort

3

A4

6

.

1

Insertion Sort

3

A4

6

.

1

Insertion Sort

3

A4

6

.

1

Insertion Sort

2

3

A

6

7

Insertion Sort

2

3

A

6

7

Insertion Sort

1 2

3

A

6

7

* Only needs O(1) extra space

- One for exchanging

Selection Sort

- How about Selection Sort?

* Needs only O(1) extra space
- For exchanging

Not-in-place Algorithm

* Do we know any algorithms which are
not-in-place?
- Merge sort
* O(n) extra space for merging

Simple Merge Sort

Input array

/\

Unsorted Unsorted
subarrayl subarray?2

Merge sort Merge sort

Sorted subarrayl | Sorted subarray?2

\/

Sorted array

What's wrong in simple?

* In the merge step

2 16|89 3| 4| 7

What's wrong in simple?

* In the merge step

6 | 8 |9 3| 4| 7

What's wrong in simple?

* In the merge step

6 | 8 |9 4 | 7

What's wrong in simple?

* In the merge step

6 | 8 |9 7

What's wrong in simple?

* In the merge step

8 | 9 7

What's wrong in simple?

* In the merge step

8 | 9

What's wrong in simple?

* In the merge step

9

What's wrong in simple?

* In the merge step

What's wrong in simple?

* In the merge step, needs O(n) extra space

MergeSort2

* We design a hew function called
“inplaceMerge”

3 4 1 2

1] 1]

MergeSort2

* We design a hew function called
“inplaceMerge”

3 4 2

1] i)

MergeSort2

* We design a hew function called
“inplaceMerge”

e
3 4 2
T T

MergeSort2

* We design a hew function called
“inplaceMerge”

3 4 2

T T

MergeSort2

* We design a hew function called
“inplaceMerge”

1 3 4 2

T T

MergeSort2

* We design a hew function called
“inplaceMerge”

e e B
1 3 4
i)

MergeSort2

* We design a hew function called
“inplaceMerge”
e e —
3 4
i) i)

1

MergeSort2

* We design a hew function called
“inplaceMerge”

1

3
T

MergeSort2

* We design a hew function called
“inplaceMerge”

1 2

3
T

MergeSort2

* We design a hew function called
“inplaceMerge”

2 4 1 3

1] 1]

MergeSort2

* We design a hew function called
“inplaceMerge”

2 4 1 3

1] 1]

MergeSort2

* We design a hew function called
“inplaceMerge”

2 4 3

1] i)

MergeSort2

* We design a hew function called
“inplaceMerge”

e
2 4 3
T T

MergeSort2

* We design a hew function called
“inplaceMerge”

e
2 4 3
i) i)

MergeSort2

* We design a hew function called
“inplaceMerge”

1 2 4 3

T T

MergeSort2

* We design a hew function called
“inplaceMerge”

1 2

A
i) i)

MergeSort2

* We design a hew function called
“inplaceMerge”

1 2

]

e
4
T

3

MergeSort2

* We design a hew function called
“inplaceMerge”

1 2

e
4
T
3

MergeSort2

* We design a hew function called
“inplaceMerge”

1 2 3

A4
T T

MergeSort2

* We design a hew function called
“inplaceMerge”

1 2 3

A
T T

MergeSort2

* We design a hew function called
“inplaceMerge”

+ Time complexity of inplaceMerge:
O(n?)

MergerSort?2

* Replace the merge function in simple
merge with inplaceMerge

+ Time complexity:
- T(n) = 2T(n/2) + n?

By Master theory, T(n) = ®(n2)

MergerSort?2

* Replace the merge function in simple
merge with inplaceMerge

* Is the algorithm an in-place algorithm?

- NO, because we recurrently call function
* It require O(log n) function call

In-place MergeSort

»+ So, we re-design the merge sort algorithm

n=2m

In-place MergeSort

»+ So, we re-design the merge sort algorithm

n=2m
S
S
S
S
-l
— T
— T

In-place MergeSort

»+ So, we re-design the merge sort algorithm

n=2m
S
S
S
S
-l
— T
— T

In-place Merge Sort

+ Time complexity:
n/2 * O(22) + n/4 * O(42) + ... + 1 * O(n?)
= O(2n) + O(4n) + O(8n) + ... + O(n?)
= O(n?)

=> still the same as MergeSort2, but avoid
using O(log n) function calls

In-place Merge Sort

- Can we do better?

* In fact, there is an In-place Merge

Sort algorithm that works faster,

using only optimal O(n log n) time

- The merging step is a bit complicated, so
we do hot introduce here ...

