In-place Algorithm



Motivation

+ Some devices don't have enough space
- Embedded system like PDA, cell phone......
» I/0 spends much more time than

calculation, and less space usually
means fewer I/0

- Database
» Reducing space usage is important



Simple Reverse

* Problem definition:
- Given an array A[0O..n]

- Output the "reverse” of A

- That is, output an array B[0..n] such that
B[k] = A[n-k] for every k

- In this problem, we are not required to
keep A after the processing



Simple Reverse

» Solution 1: Use a hew array with size
equal to the input array size
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Simple Reverse

* Needs O(n) extra space

» Can we use less space?



Smarter Reverse

» Solution 2: Exchange the first and
the last elements (inside A), and then
serve the remaining list



Smarter Reverse
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Smarter Reverse

* Needs O(1) extra space
- One for exchanging elements



What is In-place Algorithm?

» Algorithm that uses a small constant
amount of extra space in addition to
the original input

» Usually overwrite the input space

- Spend more time in some cases

* On the contrary: not-in-place or out-
of-place



More Examples

* Do we know any algorithms which are
in-place?

- Insertion sort

- Selection sort
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Insertion Sort
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* Only needs O(1) extra space

- One for exchanging




Selection Sort

- How about Selection Sort?

* Needs only O(1) extra space
- For exchanging



Not-in-place Algorithm

* Do we know any algorithms which are
not-in-place?
- Merge sort
* O(n) extra space for merging



Simple Merge Sort

Input array
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What's wrong in simple?

* In the merge step
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What's wrong in simple?

* In the merge step, needs O(n) extra space




MergeSort2

* We design a hew function called
“inplaceMerge”
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MergeSort2

* We design a hew function called
“inplaceMerge”

+ Time complexity of inplaceMerge:
O(n?)



MergerSort?2

* Replace the merge function in simple
merge with inplaceMerge

+ Time complexity:
- T(n) = 2T(n/2) + n?

By Master theory, T(n) = ®(n2)



MergerSort?2

* Replace the merge function in simple
merge with inplaceMerge

* Is the algorithm an in-place algorithm?

- NO, because we recurrently call function
* It require O(log n) function call



In-place MergeSort

»+ So, we re-design the merge sort algorithm

n=2m
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In-place Merge Sort

+ Time complexity:
n/2 * O(22) + n/4 * O(42) + ... + 1 * O(n?)
= O(2n) + O(4n) + O(8n) + ... + O(n?)
= O(n?)

=> still the same as MergeSort2, but avoid
using O(log n) function calls



In-place Merge Sort

- Can we do better?

* In fact, there is an In-place Merge

Sort algorithm that works faster,

using only optimal O(n log n) time

- The merging step is a bit complicated, so
we do hot introduce here ...



