Design and Analysis of Algorithms

Homework 1

Outline

- Question 1
- Question 2
- Question 3
- Question 4
- Question 5
- Question 6(a) and 6(b)

Basic Basic Basic Moderate Moderate Challenge

• Practice to solve the following recurrences:

• (a)
$$T(n) = 9T(n/2) + n^3$$

- (b) $T(n) = 7T(n/2) + n^3$
- (c) $T(n) = T(\sqrt{n}) + \log n$
- (d) $T(n) = 0.\tilde{5}T(n/2) + n$
- (e) T(n) = 3T(n/3) + n/3

- You can solve by substitution method, recursion tree method or master theorem
- T(1) = 1 (if necessary)
- Do your best to use Θ-notation. If you can not use Θ-notation, then use O-notation.

• Prove that if $f(n) \in \omega(g(n))$, then $f(n) \notin O(g(n))$

• Hint:
$$\lim_{n \to \infty} \frac{f(n)}{g(n)}$$

Merge Sort

 Recall that it first divides the list into two parts

- Then sorts each part recursively
 3 1 8 7 6 5 4 2
- Merges the two sorted parts
- Running time: $\Theta(n \log n)$

Consider another merge sort

It first divides the list into three parts

1 8 7 6 5 4 2 9

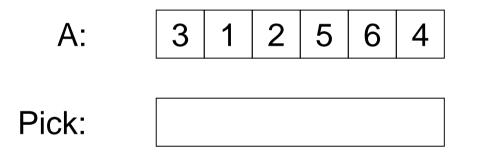
- Then sorts each part recursively
 3 1 8 7 6 5 4 2 9
- Merges the three sorted parts
- Running time: ?

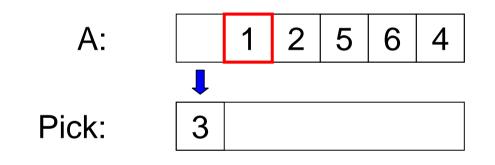
- How to merge the three sorted parts together?
- Is the three-part merge sort faster than the two-part merge sort? Why?
 – compare by asymptotic notation

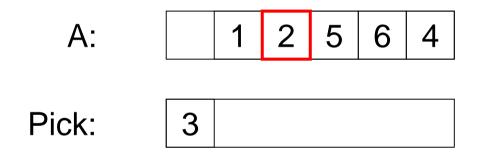
• Analyze the running time of the following code

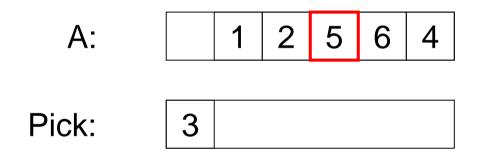
• Please use Θ -notation

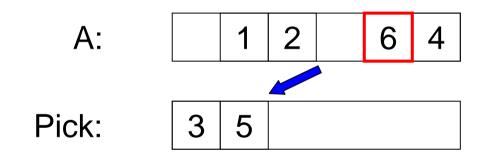
- Your smart friend discovers a new sorting algorithm based on a function called Greedy Pick described as follow
 - Input: an integer sequence A
- Method: Pick an increasing sequence start from the first element of A
- Output: the increasing sequence

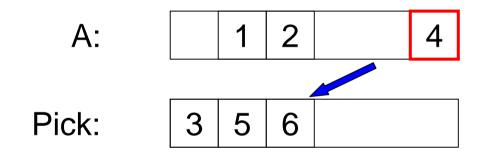


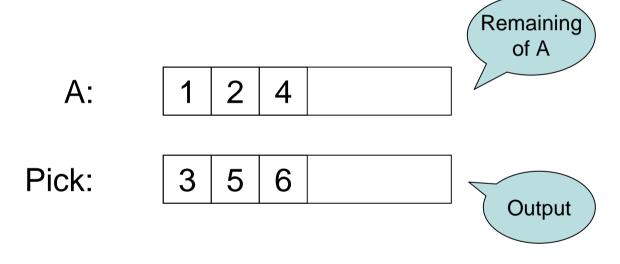




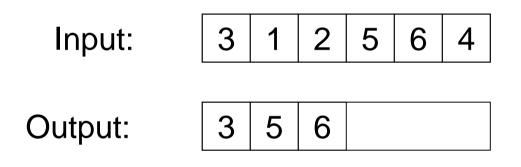




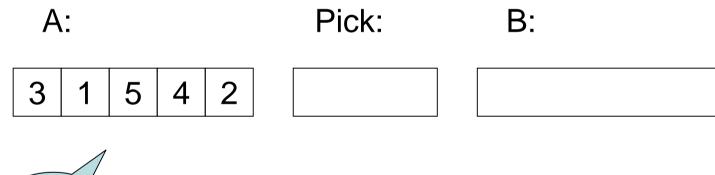


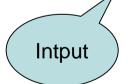


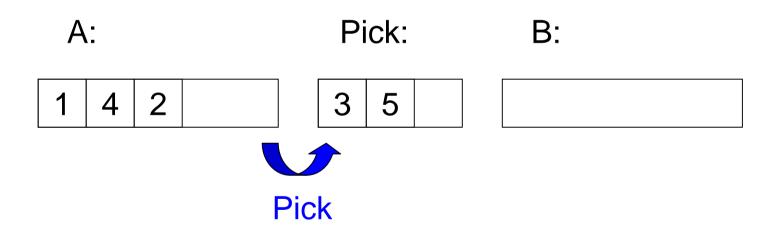
• Greedy pick example:

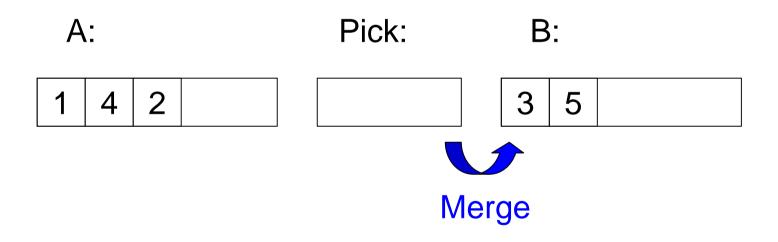


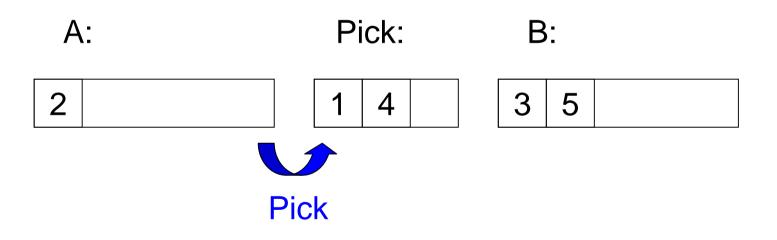
Note: Not the longest increasing sequence 1, 2, 5, 6. And can not select 4 although it is after 3.

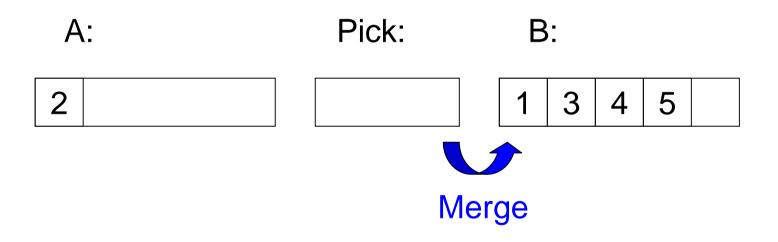


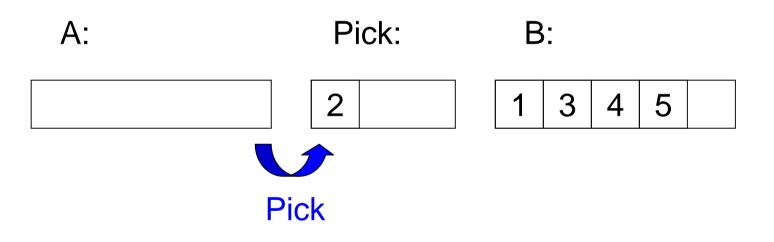


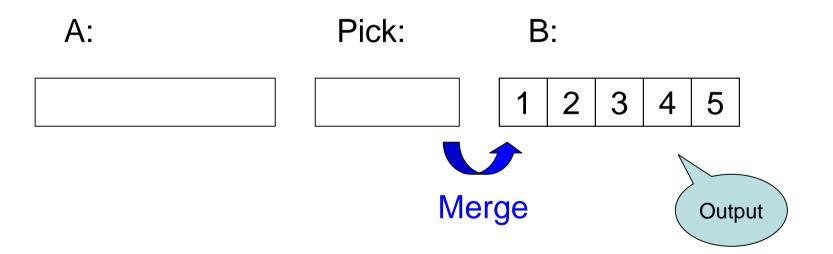












- Show the sorting algorithm is correct
- Describe a worst-case input such that the above algorithm will run in Θ(n²) time, and show your analysis

Question 6(a)

- Your friend is holding a sorted integer array A which contains n integer.
- The integers in A are from 0 to n and they are distinct
 - So there's an integer missing!
- Try to find the missing integer by asking O(log² n) questions in the form:
 "What is the jth bit of A[i]?"

Question 6(a)

- If we can ask "What is A[i]?" then we can find the number easily by binary search
- But now we can only see a bit at a time
- Note: n is the number of integers, not the number of bits
 - If we see all the bits, it's not O(n)

Question 6(b)

- Just like 6(a), if A is unsorted, can you find the missing integer in the running time of O(n) questions?
- Hint: If you have seen the last bits of every A[i], can you determine if the missing number is odd or even?
- Hint: What is n + n/2 + n/4 + n/8 + ...?

Score

	Question 1	15%
	Question 2	15%
	Question 3	15%
	Question 4	15%
	Question 5	15%
	Question 6(a)	15%
+)	6(b)	15%
		105%

x) Question 7	10%
, ,	105% + 105% * 10%