
1

CS4311
Design and Analysis of

Algorithms

Tutorial: Analysis of Union-By-Rank
with Path Compression

2

About this lecture
•Introduce an Ackermann-like function

which grows even faster than Ackermann
•Use it to represent “relative level”of

difference between two numbers

•Analyze the amortized complexity of
Union-By-Rank + Path Compression
•Based on the above function

3

Review: Ackermann Function
•The Ackermann function is defined

recursively as follows:

A0(n) = n + 1
Am(0) = Am-1(1)
Am(n) = Am-1(Am-1(…Am-1(Am-1(1))…)

n+1 iterations of Am-1

4

A Similar Function
•We now define a similar function:

B0(n) = n + 1
Bm(n) = Bm-1(Bm-1(…Bm-1(Bm-1(n))…)

n+1 iterations of Bm-1

observe the
difference

•By induction, we can show that
for all n 1 and all m,

Bm(n) Am(n)

5

(n) : Inverse of B
•The inverse of Ackermann is defined as:

(n) = (n,n)
= min { k | Ak(1) log n }

•We can define inverse of B similarly :
(n) = min { k | Bk(1) n }

•Like (n) , (n) is at most 4 in practice
•In fact: (n) = O((n))

6

Relative Level (1)
•Let X, Y be positive integers, with X Y
•We can use the previous function B to

measure how much X is larger than Y :
•Precisely, we find the largest ` with

B` (Y) X

•We call this ` the level of X w.r.t. Y
• Intuitively, think of X and Y as the money possessed

by two very rich persons ; the level measures how far
away one is from the other …

7

Relative Level (2)
•Suppose ` = the level of X w.r.t. Y

•Based on `, we can further define the
degree of difference between X and Y
•Precisely, we find the largest d with

B` (B` (…B` (B` (Y))…) X
d iterations of B`

Lemma: 1 d Y (why??)

8

Analysis of Amortized Cost
•We are ready to analyze the amortized

cost of Union/Find operations when we
apply Union-By-Rank + Path Compression

•Recall that each node stores a rank value
•Our potential function is based on the

relative level between the rank of a
node with the rank of its parent

•We first give some properties of rank

9

Properties of Rank
Suppose the input set has n elements

Property 1: Once a node has got a parent,
its rank will never change

Property 2: Rank of a node n - 1

Property 3: For any node with a parent,
rank of a node rank of its parent

10

Max Level
•Let rank(x) = rank of a node x
•Let u = node with rank at least 1,

p = parent of u
•Let M = relative level between

rank(u) and rank(p)

 BM(1) BM(rank(u)) rank(p) n-1

•On the other hand, B(n)(1) n
 M (n)

11

Potential Function
•For our analysis, we use the following

potential function :
•For a root or rank-0 node u,

(u) = (n) rank(u)
•For other node v (rank at least 1),

(v) = ((n) –̀ v) rank(v) - dv

where `v = level of v w.r.t. its parent

dv = degree of v w.r.t. its parent

12

Potential Function

•Potential of forest F :
(F) = sum of potentials of all nodes

Lemma: (F) is at least 0

Proof: For any non-leaf node v,
(n) –̀ v is at least 1, and dv rank(v)

13

Amortized Cost for Find
Consider performing Find(x)
•Which nodes will change their potential ?

Ans. x and all its ancestors (say, k of them)

•What will be the change their potential ?
Ans. Most (except at most (n) of them) drops

by at least 1 [See proof in next slides]

 amortized cost of Find
O(k+1) –(k - (n)) = O((n))

14

Proof
•Consider ancestors of x

with the same level L

Lemma: Apart from the one
closest to root, potential
of each ancestor drops
by 1 after Union x

root

level = L

Proof: Let v be one of such ancestors.
There are two cases …

15

Case 1 : `v increases
Let `, d = level and degree before Union

`*, d* = level and degree after Union

As ((n) –̀ *) rank(v) - d*

 ((n) –̀ *) rank(v) [as d* 1]

 ((n) –̀) rank(v) - rank(v) [as `v increases]

 ((n) –̀) rank(v) - d [as rank(v) d]

 (v) drops by at least 1
(v) after Union(v) before Union

(v) after Union

16

Case 2 : `v unchanged
Let d = degree before Union
•Before Union, some ancestor u of v has

same level L as v
 rank(root) rank(parent(u))

BL(rank(u)) BL(rank(parent(v)))
BL(BL …(BL(rank(v)) …)

 d increases by at least 1 after Union
 (v) drops by at least 1

d of them

17

Key Result for Find
Corollary: Consider the ancestors of x .

When Find(x) is performed, except at
most (n) of them, the potential of all
other ancestors drops by at least 1

Proof: All by one node from each level
drops the potential by at least 1
 corollary follows since there are

at most (n) distinct levels

18

Amortized Cost for Union
Consider performing Union(x,y) :

•Let rx = root of tree containing x
•Let ry = root of tree containing y
•Suppose that during Union(x,y),

rx is linked to ry (making ry the new root)

•Which nodes will change their potential ?
Ans. rx, ry, children of ry

19

Amortized Cost for Union
•Which nodes will increase their potential ?

(rx) after Union : always decreases
(ry) after Union : may increase if its

rank increases ;
cannot decrease

(child v of ry) may decrease ;
after Union : cannot increase ;

 Only (ry) may increase

20

Amortized Cost for Union
•Precisely,

(ry) may increase by at most (n)

•Since Union can be performed by first
Find(x), Find(y), and then link the roots,
 amortized cost of Union(x,y)

2 amortized cost of Find +
1 + increase in potential = O((n))

