
1

CS4311
Design and Analysis of

Algorithms

Tutorial: Analysis of Union-By-Rank
with Path Compression



2

About this lecture
•Introduce an Ackermann-like function

which grows even faster than Ackermann
•Use it to represent “relative level”of

difference between two numbers

•Analyze the amortized complexity of
Union-By-Rank + Path Compression
•Based on the above function



3

Review: Ackermann Function
•The Ackermann function is defined

recursively as follows:

A0(n) = n + 1
Am(0) = Am-1(1)
Am(n) = Am-1(Am-1(…Am-1(Am-1(1))…)

n+1 iterations of Am-1



4

A Similar Function
•We now define a similar function:

B0(n) = n + 1
Bm(n) = Bm-1(Bm-1(…Bm-1(Bm-1(n))…)

n+1 iterations of Bm-1

observe the
difference

•By induction, we can show that
for all n 1 and all m,

Bm(n) Am(n)



5

(n) : Inverse of B
•The inverse of Ackermann is defined as:

(n) = (n,n)
= min { k | Ak(1) log n }

•We can define inverse of B similarly :
(n) = min { k | Bk(1) n }

•Like (n) , (n) is at most 4 in practice
•In fact: (n) = O((n))



6

Relative Level (1)
•Let X, Y be positive integers, with X Y
•We can use the previous function B to

measure how much X is larger than Y :
•Precisely, we find the largest ` with

B` (Y) X

•We call this ` the level of X w.r.t. Y
• Intuitively, think of X and Y as the money possessed

by two very rich persons ; the level measures how far
away one is from the other …



7

Relative Level (2)
•Suppose ` = the level of X w.r.t. Y

•Based on `, we can further define the
degree of difference between X and Y
•Precisely, we find the largest d with

B` (B` (…B` (B` (Y))…) X
d iterations of B`

Lemma: 1 d Y (why??)



8

Analysis of Amortized Cost
•We are ready to analyze the amortized

cost of Union/Find operations when we
apply Union-By-Rank + Path Compression

•Recall that each node stores a rank value
•Our potential function is based on the

relative level between the rank of a
node with the rank of its parent

•We first give some properties of rank



9

Properties of Rank
Suppose the input set has n elements

Property 1: Once a node has got a parent,
its rank will never change

Property 2: Rank of a node n - 1

Property 3: For any node with a parent,
rank of a node  rank of its parent



10

Max Level
•Let rank(x) = rank of a node x
•Let u = node with rank at least 1,

p = parent of u
•Let M = relative level between

rank(u) and rank(p)

 BM(1) BM(rank(u)) rank(p) n-1

•On the other hand, B(n)(1) n
 M (n)



11

Potential Function
•For our analysis, we use the following

potential function :
•For a root or rank-0 node u,

(u) = (n) rank(u)
•For other node v (rank at least 1),

(v) = ((n) –̀ v) rank(v) - dv

where `v = level of v w.r.t. its parent

dv = degree of v w.r.t. its parent



12

Potential Function

•Potential of forest F :
(F) = sum of potentials of all nodes

Lemma: (F) is at least 0

Proof: For any non-leaf node v,
(n) –̀ v is at least 1, and dv rank(v)



13

Amortized Cost for Find
Consider performing Find(x)
•Which nodes will change their potential ?

Ans. x and all its ancestors (say, k of them)

•What will be the change their potential ?
Ans. Most (except at most (n) of them) drops

by at least 1 [See proof in next slides]

 amortized cost of Find
O(k+1) –(k - (n)) = O((n))



14

Proof
•Consider ancestors of x

with the same level L

Lemma: Apart from the one
closest to root, potential
of each ancestor drops
by 1 after Union x

root

level = L

Proof: Let v be one of such ancestors.
There are two cases …



15

Case 1 : `v increases
Let `, d = level and degree before Union

`*, d* = level and degree after Union

As ((n) –̀ *) rank(v) - d*

 ((n) –̀ *) rank(v) [as d* 1]

 ((n) –̀ ) rank(v) - rank(v) [as `v increases]

 ((n) –̀ ) rank(v) - d [as rank(v) d]

 (v) drops by at least 1
(v) after Union(v) before Union

(v) after Union



16

Case 2 : `v unchanged
Let d = degree before Union
•Before Union, some ancestor u of v has

same level L as v
 rank(root) rank(parent(u))

BL(rank(u)) BL(rank(parent(v)))
BL(BL …(BL(rank(v)) …)

 d increases by at least 1 after Union
 (v) drops by at least 1

d of them



17

Key Result for Find
Corollary: Consider the ancestors of x .

When Find(x) is performed, except at
most (n) of them, the potential of all
other ancestors drops by at least 1

Proof: All by one node from each level
drops the potential by at least 1
 corollary follows since there are

at most (n) distinct levels



18

Amortized Cost for Union
Consider performing Union(x,y) :

•Let rx = root of tree containing x
•Let ry = root of tree containing y
•Suppose that during Union(x,y),

rx is linked to ry (making ry the new root)

•Which nodes will change their potential ?
Ans. rx, ry, children of ry



19

Amortized Cost for Union
•Which nodes will increase their potential ?

(rx) after Union : always decreases
(ry) after Union : may increase if its

rank increases ;
cannot decrease

(child v of ry) may decrease ;
after Union : cannot increase ;

 Only (ry) may increase



20

Amortized Cost for Union
•Precisely,

(ry) may increase by at most (n)

•Since Union can be performed by first
Find(x), Find(y), and then link the roots,
 amortized cost of Union(x,y)

2 amortized cost of Find +
1 + increase in potential = O((n))


