CS4311
Design and Analysis of Algorithms

Tutorial: Analysis of Union-By-Rank with Path Compression
About this lecture

• Introduce an Ackermann-like function which grows even faster than Ackermann
 • Use it to represent “relative level” of difference between two numbers

• Analyze the amortized complexity of Union-By-Rank + Path Compression
 • Based on the above function
Review: Ackermann Function

• The Ackermann function is defined recursively as follows:

\[A_0(n) = n + 1 \]
\[A_m(0) = A_{m-1}(1) \]
\[A_m(n) = A_{m-1}(A_{m-1}(\ldots A_{m-1}(A_{m-1}(1))\ldots)) \]

\(n+1 \) iterations of \(A_{m-1} \)
A Similar Function

- We now define a similar function:

\[
B_0(n) = n + 1
\]

\[
B_m(n) = B_{m-1}(B_{m-1}(\ldots B_{m-1}(B_{m-1}(n))\ldots))
\]

\[n+1 \text{ iterations of } B_{m-1}\]

- By induction, we can show that for all \(n \geq 1 \) and all \(m \),

\[
B_m(n) \geq A_m(n)
\]
\(\beta(n) : \text{Inverse of } B \)

- The inverse of Ackermann is defined as:
 \[\alpha(n) = \alpha(n,n) = \min \{ k \mid A_k(1) \geq \log n \} \]
- We can define inverse of B similarly:
 \[\beta(n) = \min \{ k \mid B_k(1) \geq n \} \]
- Like \(\alpha(n) \), \(\beta(n) \) is at most 4 in practice
- In fact: \(\beta(n) = O(\alpha(n)) \)
Relative Level (1)

• Let X, Y be positive integers, with $X > Y$
• We can use the previous function B to measure how much X is larger than Y:
 • Precisely, we find the largest ℓ with
 $$B_\ell(Y) \leq X$$
 • We call this ℓ the level of X w.r.t. Y
• Intuitively, think of X and Y as the money possessed by two very rich persons; the level measures how far away one is from the other …
Relative Level (2)

• Suppose $\ell = \text{the level of } X \text{ w.r.t. } Y$

• Based on ℓ, we can further define the degree of difference between X and Y

• Precisely, we find the largest d with

$$B_{\ell} (B_{\ell} (\ldots B_{\ell} (B_{\ell} (Y)) \ldots)) \leq X$$

d iterations of B_{ℓ}

Lemma: $1 \leq d \leq Y$ (why??)
Analysis of Amortized Cost

• We are ready to analyze the amortized cost of Union/Find operations when we apply Union-By-Rank + Path Compression.

• Recall that each node stores a rank value.
 • Our potential function is based on the relative level between the rank of a node with the rank of its parent.

• We first give some properties of rank.
Properties of Rank

Suppose the input set has \(n \) elements

Property 1: Once a node has got a parent, its rank will never change.

Property 2: Rank of a node \(\leq n - 1 \)

Property 3: For any node with a parent, rank of a node < rank of its parent.
Max Level

- Let $\text{rank}(x) = \text{rank of a node } x$
- Let $u = \text{node with rank at least } 1$, $p = \text{parent of } u$
- Let $M = \text{relative level between } \text{rank}(u) \text{ and } \text{rank}(p)$

$\Rightarrow B_{M}(1) \leq B_{M}(\text{rank}(u)) \leq \text{rank}(p) \leq n-1$

- On the other hand, $B_{\beta(n)}(1) \geq n$

$\Rightarrow M < \beta(n)$
Potential Function

• For our analysis, we use the following potential function:
 • For a root or rank-0 node u,
 \[\Phi(u) = \beta(n) \cdot \text{rank}(u) \]
 • For other node v (rank at least 1),
 \[\Phi(v) = (\beta(n) - \ell_v) \cdot \text{rank}(v) - d_v \]
 where $\ell_v = \text{level of } v \text{ w.r.t. its parent}$
 $d_v = \text{degree of } v \text{ w.r.t. its parent}$
Potential Function

- Potential of forest F:
 \[\Phi(F) = \text{sum of potentials of all nodes} \]

Lemma: $\Phi(F)$ is at least 0

Proof: For any non-leaf node v,
 \[\beta(n) - \ell_v \text{ is at least 1, and } d_v \leq \text{rank}(v) \]
Amortized Cost for Find

Consider performing Find(x)

• Which nodes will change their potential?
 Ans. x and all its ancestors (say, k of them)

• What will be the change their potential?
 Ans. Most (except at most $\beta(n)$ of them) drops by at least 1 [See proof in next slides]

\Rightarrow amortized cost of Find

$\leq O(k+1) - (k - \beta(n)) = O(\beta(n))$
Proof

- Consider ancestors of x with the same level L

Lemma: Apart from the one closest to root, potential of each ancestor drops by 1 after Union

Proof: Let v be one of such ancestors. There are two cases ...
Case 1: \(\ell_v \) increases

Let \(\ell, d \) = level and degree before Union
\(\ell^*, d^* \) = level and degree after Union

As
\[
(\beta(n) - \ell^*) \text{ rank}(v) - d^* < (\beta(n) - \ell^*) \text{ rank}(v)
\]
\[
\leq (\beta(n) - \ell) \text{ rank}(v) - \text{ rank}(v) \quad \text{[as } d^* \geq 1]\]
\[
\leq (\beta(n) - \ell) \text{ rank}(v) - d \quad \text{[as } \text{ rank}(v) \geq d]\]

\(\Phi(v) \) drops by at least 1
Case 2: ℓ_v unchanged

Let $d = \text{degree before Union}$

- Before Union, some ancestor u of v has same level L as v

 \[\Rightarrow \text{rank(root)} \geq \text{rank(parent(u))} \]

 \[\geq B_L(\text{rank(u)}) \geq B_L(\text{rank(parent(v)))} \]

 \[\geq B_L(B_L \ldots (B_L(\text{rank(v)}) \ldots) \]

\[d \text{ of them} \]

\[\Rightarrow d \text{ increases by at least 1 after Union} \]

\[\Rightarrow \Phi(v) \text{ drops by at least 1} \]
Key Result for Find

Corollary: Consider the ancestors of x. When $\text{Find}(x)$ is performed, except at most $\beta(n)$ of them, the potential of all other ancestors drops by at least 1.

Proof: All by one node from each level drops the potential by at least 1. \Rightarrow corollary follows since there are at most $\beta(n)$ distinct levels.
Amortized Cost for Union

Consider performing Union(x,y):

- Let \(r_x \) = root of tree containing \(x \)
- Let \(r_y \) = root of tree containing \(y \)
- Suppose that during Union(x,y),
 \(r_x \) is linked to \(r_y \) (making \(r_y \) the new root)

- Which nodes will change their potential?
 Ans. \(r_x, r_y, \) children of \(r_y \)
Amortized Cost for Union

- Which nodes will increase their potential?

\[\Phi(r_x) \] after Union: always decreases

\[\Phi(r_y) \] after Union: may increase if its rank increases; cannot decrease

\[\Phi(\text{child } v \text{ of } r_y) \] after Union: may decrease; cannot increase

\[\rightarrow \text{ Only } \Phi(r_y) \text{ may increase} \]
Amortized Cost for Union

• Precisely,
 \[\Phi(r_y) \text{ may increase by at most } \beta(n) \]

• Since Union can be performed by first Find(x), Find(y), and then link the roots,
 \[\text{amortized cost of } \text{Union}(x,y) \leq 2 \times \text{amortized cost of } \text{Find} + 1 + \text{increase in potential} = O(\beta(n)) \]