CS4311 Design and Analysis of Algorithms

Tutorial: Analysis of Union-By-Rank with Path Compression

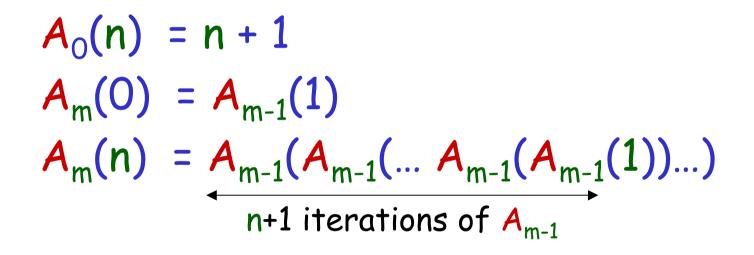
1

About this lecture

- Introduce an Ackermann-like function which grows even faster than Ackermann
 - Use it to represent "relative level" of difference between two numbers
- Analyze the amortized complexity of Union-By-Rank + Path Compression
 - Based on the above function

Review: Ackermann Function

 The Ackermann function is defined recursively as follows:



A Similar Function

We now define a similar function:

 $B_{0}(n) = n + 1$ $B_{m}(n) = B_{m-1}(B_{m-1}(..., B_{m-1}(B_{m-1}(n))...))$ n+1 iterations of B_{m-1}

• By induction, we can show that for all $n \ge 1$ and all m,

observe the difference

 $B_m(n) \ge A_m(n)$

$\beta(n)$: Inverse of B

- The inverse of Ackermann is defined as: $\alpha(n) = \alpha(n,n)$ $= \min \{ k \mid A_k(1) \ge \log n \}$
- We can define inverse of B similarly : $\beta(n) = \min \{ k \mid B_k(1) \ge n \}$
- Like $\alpha(n)$, $\beta(n)$ is at most 4 in practice
- In fact: $\beta(n) = O(\alpha(n))$

Relative Level (1)

- Let X, Y be positive integers, with X > Y
- We can use the previous function B to measure how much X is larger than Y :
 - Precisely, we find the largest ℓ with $B_{\ell}(Y) \leq X$
 - We call this ℓ the level of X w.r.t. Y
- Intuitively, think of X and Y as the money possessed by two very rich persons ; the level measures how far away one is from the other ...

Relative Level (2)

- Suppose ℓ = the level of X w.r.t. Y
- Based on ℓ , we can further define the degree of difference between X and Y
 - Precisely, we find the largest d with

$$\frac{\mathsf{B}_{\ell}(\mathsf{B}_{\ell}(\ldots,\mathsf{B}_{\ell}(\mathsf{B}_{\ell}(\mathsf{Y}))\ldots))}{d \text{ iterations of } \mathsf{B}_{\ell}} \leq \mathsf{X}$$

Lemma: $1 \leq d \leq Y$ (why??)

Analysis of Amortized Cost

- We are ready to analyze the amortized cost of Union/Find operations when we apply Union-By-Rank + Path Compression
- Recall that each node stores a rank value
 - Our potential function is based on the relative level between the rank of a node with the rank of its parent
- We first give some properties of rank

Properties of Rank Suppose the input set has n elements

Property 1: Once a node has got a parent, its rank will never change

Property 2: Rank of a node $\leq n - 1$

Property 3: For any node with a parent, rank of a node < rank of its parent

Max Level

- Let rank(x) = rank of a node x
- Let u = node with rank at least 1,
 p = parent of u
- Let M = relative level between rank(u) and rank(p)
 - → $B_M(1) \le B_M(rank(u)) \le rank(p) \le n-1$
- On the other hand, $B_{\beta(n)}(1) \ge n$ $\rightarrow \qquad M < \beta(n)$

Potential Function

- For our analysis, we use the following potential function :
 - For a root or rank-0 node u, $\Phi(u) = \beta(n) \operatorname{rank}(u)$
 - For other node v (rank at least 1),

 $\Phi(v) = (\beta(n) - \ell_v) \operatorname{rank}(v) - d_v$

where ℓ_v = level of v w.r.t. its parent d_v = degree of v w.r.t. its parent

Potential Function

• Potential of forest F : $\Phi(F) = sum of potentials of all nodes$

Lemma: $\Phi(F)$ is at least 0

Proof: For any non-leaf node v, $\beta(n) - \ell_v$ is at least 1, and $d_v \leq \operatorname{rank}(v)$

Amortized Cost for Find

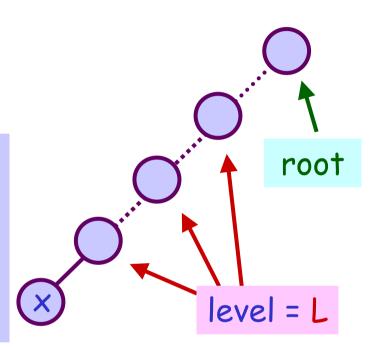
Consider performing Find(x)

- Which nodes will change their potential? Ans. x and all its ancestors (say, k of them)
- What will be the change their potential?
 Ans. Most (except at most β(n) of them) drops by at least 1 [See proof in next slides]
 → amortized cost of Find
 - $\leq O(k+1) (k \beta(n)) = O(\beta(n))$

Proof

 Consider ancestors of x with the same level L

Lemma: Apart from the one closest to root, potential of each ancestor drops by 1 after Union



Proof: Let v be one of such ancestors. There are two cases ...

Case 1: ℓ_v increases Let ℓ , d = level and degree before Union ℓ^* , d^* = level and degree after Union As $(\beta(n) - \ell^*) \operatorname{rank}(v) - d^* - \Phi(v)$ after Union < $(\beta(n) - \ell^*)$ rank(v) [as $d^{\star} \geq 1$] $\leq (\beta(n) - \ell) \operatorname{rank}(v) - \operatorname{rank}(v)$ [as ℓ_v increases] \leq (β (n) - ℓ) rank(v) - d $[as rank(v) \ge d]$ $\Phi(v)$ before Union $\rightarrow \Phi(v)$ drops by at least 1

Case 2 : ℓ_v unchanged

Let d = degree before Union

- Before Union, some ancestor u of v has same level L as v
 - → rank(root) ≥ rank(parent(u)) ≥ $B_L(rank(u)) \ge B_L(rank(parent(v)))$ ≥ $B_L(B_L ... (B_L(rank(v)) ...))$ d of them
- → d increases by at least 1 after Union → $\Phi(v)$ drops by at least 1

Key Result for Find

Corollary: Consider the ancestors of x . When Find(x) is performed, except at most $\beta(n)$ of them, the potential of all other ancestors drops by at least 1

Proof: All by one node from each level drops the potential by at least 1
→ corollary follows since there are at most β(n) distinct levels

Amortized Cost for Union

Consider performing Union(x,y):

- Let r_x = root of tree containing x
- Let r_y = root of tree containing y
- Suppose that during Union(x,y), r_x is linked to r_y (making r_y the new root)
- Which nodes will change their potential? Ans. r_x , r_y , children of r_y

Amortized Cost for Union

- Which nodes will increase their potential? $\Phi(r_x)$ after Union : always decreases $\Phi(r_y)$ after Union : may increase if its rank increases ; cannot decrease
 - $\Phi(\text{child v of } r_y)$ after Union :

rank increases ; cannot decrease may decrease ; cannot increase ;

→ Only $\Phi(\mathbf{r}_{y})$ may increase

Amortized Cost for Union

• Precisely,

 $\Phi(\mathbf{r}_{y})$ may increase by at most $\beta(\mathbf{n})$

- Since Union can be performed by first
 Find(x), Find(y), and then link the roots,
 - \rightarrow amortized cost of Union(x,y)

 \leq 2 \times amortized cost of Find +

1 + increase in potential = $O(\beta(n))$