
1

CS4311
Design and Analysis of

Algorithms

Suffix Tree and Suffix Array

2

About this tutorial

•Introduce two data structures for text
indexing problem:

Suffix Tree and Suffix Array

3

Text Indexing
String Matching problem:

Given a text T and a pattern P, how to
locate all occurrences of P in T ?
•KMP algorithm can solve this in

O(|T|+|P|) time optimal
•In some applications, T is very long, and

given in advance, and we will search
different patterns against it later
•E.g., T= Human DNA, P = gene

4

Text Indexing
Text Indexing problem:

Suppose a text T is known.
Can we build a data structure for T, such
that for any pattern P given later, we can
find all occurrences of P in T quickly ?

•The data structure is called an index of T
•Target: search better than O(|T|+|P|) ??

5

Text Indexing
•Two main kinds of text indexes:

Word-Based: (for texts formed by words)

•Used by most text search engine
•E.g., Inverted Files

Full-Text: (for texts with no word boundaries)

•Used in indexing DNA
•E.g., Suffix Tree, Suffix Array

6

Suffix Tree
•Let T[1..n] be a text with n characters

•we assume T[n] is a unique character

•For any j, T[j..n] is called a suffix of T
 T has exactly n suffixes

•Weiner (1973) and McCreight (1976)
independently invented the suffix tree
•a tree formed by putting all suffixes of

T together

7

c

c

a a#

#
c a

a

#
c a

#
ca

#

c
a
a
c

#

caac

Suffix Tree of acacaac#

8

5

3

6
4

2

7

1

8

Definition of a Suffix Tree

•Suffix tree is an edge-labeled compact
tree (no degree-1 nodes) with n leaves
•each leaf  suffix
• leaf label  starting pos of suffix
•If we traverse from root to leaf k :

edge labels along path  suffix T[k..n]
•edge-label to each child starts with

different character

9

Searching in a Suffix Tree

Theorem: If a pattern P occurs at position j
in T, P is a prefix of T[j..n]

This suggests the searching algorithm below:

•Start from root of the suffix tree
•Traverse the suffix tree using P

 What we are doing is to match P with all
suffixes of T at the same time

10

Searching in a Suffix Tree
Theorem: Pattern P occurs in T if and only

if all chars of P are matched in the
traversal of the searching algorithm

Questions:
1. How to locate the occurrences?
2. What is the searching time?

O(|P|+r) time, where r = #occurrences

11

Space Usage
•There are O(n) nodes and O(n) edges in

the suffix tree
 O(n) space ?

•Each edge needs to store its label, which
can contain O(n) chars
 In the worst-case, total O(n2) chars

•Can we reduce space usage?

12

Space Usage
Observation: Each edge label must be

equal to some substring of T
Clever Idea:

1. Store T, and
2. Replace each edge label by 2 integers,

telling which substring it is equal to

 Total space: O(n)

13

[8,8] [2,2]

[3,3]

Suffix Tree of acacaac#

8

5

3

6
4

2

7

1

[8,8]

[8,8]
[6,8] [4,8]

[1,1]

[2,2]

[3,3]

[6,8] [4,8]

[6,8]

14

Suffix Array
•Although suffix tree takes O(n) space,

the hidden constant is quite large
 around 40n to 60n bytes

•Manber and Myers (1990) simplified the
suffix tree, and invented the suffix array
•An array storing the suffixes of T in

the “dictionary”order

15

Suffix Array

•The suffix array SA for T
has n entries

•For any j, SA[j] stores the
jth smallest suffix, based
on alphabetical order

•Theorem: If P occurs in T,
its occurrences correspond
to consecutive region in SAcacaac#

caac#
c#
acacaac#
acaac#
ac#
aac#
#

Suffix Array
of acacaac#

1
2
3
4
5
6
7
8

16

Suffix Array

 Searching P takes
O(|P| log n) time

using binary search

Space:
We can represent each
suffix by its starting
position  O(n) space

In practice, around 14n bytescacaac#
caac#
c#
acacaac#
acaac#
ac#
aac#
#

Suffix Array
of acacaac#

1
2
3
4
5
6
7
8

