Stabbing Problem
Outline

• Stabbing problem
• Method 1
• Method 2
• Related problems
Stabbing Problem

- Given a set of n line segments S
- Input: query point q
- Output: the intervals that contain q
Stabbing Problem

• Brute force algorithm:
 - For query point q and every interval s_i in S, check if q overlaps with s_i
 - Time complexity: $O(n)$
Stabbing Problem

• Brute force algorithm:
 - For query point q and every interval \(s_i \) in S, check if q overlaps with \(s_i \)
 - Time complexity: \(O(n) \)

• Can we do faster?
Outline

• Stabbing problem
• Method 1 - segment tree
Segment Tree

• Preprocess:
 - Step 1: Sort by all the start points and end points
 - Step 2: By the 2n points, build a balanced binary search tree T
 • Height of $T = O(\log n)$
 - Step 3: Insert the line segments into T
 • Insert a line segment needs $O(\log n)$ time
Example
Segment Tree

- Property: any segment is stored at most twice at each level of T
- Space complexity: $O(n \log n)$
- Preprocessing time: $O(n \log n)$

- Note: every node represents a segment
Segment Tree Query
Segment Tree Query
Segment Tree

• Query time:
 - $O(\log n + k_1 + k_2 + k_3 + \ldots + k_{\log n})$
 - $= O(\log n + k)$
 - k_L: number of nodes reported on level L

• Output-sensitive
 - algorithms whose running time depends not only on the size of the input but also on the size of the output
Outline

• Stabbing problem
• Method 1 - segment tree
• Method 2 - interval tree
Interval Tree

• Preprocess:
 - Build a balanced binary search tree T for the n line segments by the start points
 • Each node v of T has information of the line segment and Max
 • Max: position of the righmost end points in subtree of root v
Interval Tree

• Preprocess time:
 - Build BBST: $O(n \log n)$
 • Insert a line segment into T: $O(\log n)$
 - Maintain Max: $O(1)$
Example

Max = 14

Max = 10

Max = 5

Max = 10

Max = 11

Max = 14
Interval Tree

- Space: $O(n)$
 - Each node represents a line segment

- Query time: $O(k \log n)$
Interval Tree

• Query:
 - Step 1: check if query point q intersects with the line segment in node x
 • Yes -> report
 - Step 2: check if q > x.max
 • Yes -> complete
 - Step 3: check if q > x.startpoint
 • Yes -> recursively run on x.leftchild and x.rightchild
 • No -> recursively run on x.leftchild
Example

Max = 14
Max = 10
Max = 5
Max = 10
Max = 11
Max = 14
Max = 14
Max = 14
Max = 10
Max = 5
Max = 10
Interval Tree

<table>
<thead>
<tr>
<th></th>
<th>$q < x\text{.max}$</th>
<th>$q > x\text{.max}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q < x\text{.start}$</td>
<td><img src="image" alt="Diagram - $q < x\text{.start}$" /></td>
<td> x\text{.start}$" /></td>
</tr>
<tr>
<td>$q > x\text{.start}$</td>
<td> x\text{.start}$" /></td>
<td> x\text{.start}$" /></td>
</tr>
</tbody>
</table>
Outline

• Stabbing problem
• Method 1 - segment tree
• Method 2 - interval tree
 (a completely different version)
Outline

- Stabbing problem
- Method 1 - segment tree
- Method 2 - interval tree
- Related problems
Related Problem

• Higher-dimension Stabbing Problem
 - Solved by multi-level of segment trees
 - Space improvement if we use interval tree at deepest level

• Given a set of points, query rectangle
 - called Range Query Problem