
Red Black Tree

A balanced binary search tree



Review

•Binary Search Tree (BST) is a good
data structure for searching algorithm

•It supports
–Search, find predecessor, find successor,

find minimum, find maximum, insertion,
deletion



Motivation

•The performance of BST is related to its
height h
–All the operation in the previous page is O(h)

Worst case: h = O(n) Best case: h = O(log n)

n



Motivation

•We want a balanced binary search tree
–Height of the tree is O(log n)

•Red-Black Tree is one of the balanced
binary search tree



Property

1. Every node is either red or black
2. The root is black
3. If a node is red, then both its children are

black

4. For each node, all path from the node to
descendant leaves contain the same
number of black nodes

• All path from the node have the same black height



Property

•Compact



Property

•The height of compacted tree
is O(log n)

•Since no two red nodes are connected,
the height of the original tree is at most
2 log n = O(log n)



Operation

•Since red-black tree is a balanced BST, it supports
Search(tree, key)
Predecessor(tree, key)
Successor(tree, key)
Minimum(tree)
Maximum(tree)

in O(log n)-time

•It also support insertion and deletion with a
little bit complicated step



Maintain Property

•Insertion and Deletion will violate the
property of red-black tree

•How to maintain the property?
–by Changing Color or Rotation



Maintain Property

•Changing color

•Rotation

y

x y

x

  





LEFT-ROTATE(T,x)

RIGHT-ROTATE(T,y)



Common Problem

•A problem during Insertion and Deletion is
Doubly-Black node

•Doubly-Black node is a node which has color
of two black, it violate property 1

•For example:

(+1 means the node need another black to
maintain the invariant of the property)

+1



Common Problem

•A common problem and its solution are
as following

a b

c
+1

a b

c a

b c



Insertion

•When insert a node z, we set the color
of z to red

•This may violate property 2 and 3

•For property 2, we set the color of root
to black after insertion



Insertion

•To fix property 3, we will consider if
–The z’s parent is a left child or right child
–The color of z's uncle y is red or black
–z is a left child or right child

•We consider the z’s parent is a left child
first, the other case can be done by
symmetric operation



Insertion

There are 4 cases:
•Case 1: y is red and z is a left child
•Case 2: y is red and z is a right child
•Case 3: y is black and z is a left child
•Case 4: y is black and z is a right child



Insertion - Case 1

•Case 1: y is red and z is a left child

z

y

z

y

z
Recursively
insert z



Insertion - Case 2

•Case 2: y is red and z is a right child

z

y

z

y

z
Recursively
insert z



Insertion - Case 3

•Case 3: y is black and z is a left child

z

y

z

y

z

y

Complete

+1



Insertion - Case 4

•Case 4: y is black and z is a right child

z

y z y

x

z

y Case 3



Insertion Analysis

•Case 1 and 2 move z up 2 levels
•Case 3 and 4 will terminate after some

number of steps
•The height of tree is finite and

is O(log n)
•The running time is O(log n)
•At most 2 rotations



Deletion Review

•Review deletion of BST
•To delete a node z, there are 3 cases
•Case1: z has no child

z



Deletion Review

•Case 2: z has one child

z z



Deletion Review

•Case 3: z has two children

z z z y

+

y

y



Deletion

•From now on, we always call the
deleted node to be z

•If z is red, it won't violate any property
•If z is a leaf, it won't violate any property
•Otherwise z is black and has a child, it

will violate property 2, 3, and 4
•For property 2, set the color of root to

black after deletion



Deletion

To fix property 3 and 4:
•If z's child x (which is the replacing node)

is red, set x to black. Done!
•If x is black, add another black to x, so

that x will be a doubly black node, and
property 3 and 4 are fixed. But property
1 is violated



Deletion

•To fix property 1, we will consider if
–x is a left child or right child
–The color of x's sibling w is red or black
–The colors of w's children

•We consider x is a left child first, the
other case can be done by symmetric
operation



Deletion

There are 4 cases:
•Case 1: w is red
•Case 2: w is black, both w's children are

black
•Case 3: w is black, w's left child is red,

w's right child is black
•Case 4: w is black, w's right child is red



Deletion - Case 1

•Case 1: w is red

x

a b

w+1 x

a b

w+2

w
b

x a+1 x w+1

Case 2, 3, 4



Deletion - Case 2

•Case 2: w is black, both w’s children are
black

x

a b

w+1 x

a b

w

+1 x

a b

w

+1

Recursively delete x



Deletion - Case 3

•Case 3: w is black, w’s left child is red,
w’s right child is black

x

a b

w

c d

+1 x

a b

w

c d

+1 x a

b

wc
d

+1 x w

Case 4

+1

+1



Deletion - Case 4

•Case 4: w is black, w’s right child is red

x w+1 x w
w

x

Complete



Deletion Analysis

•Case 2 move x up 1 level
•Case 1, 3 and 4 will terminate after

some number of steps
•The height of tree is finite and

is O(log n)
•The running time is O(log n)
•At most 3 rotations



Conclusion

•Red-Black Tree is a balanced binary
search tree which supports the
operation search, find predecessor, find
successor, find minimum, find maximum,
insertion and deletion in O(log n)-time


