Red Black Tree

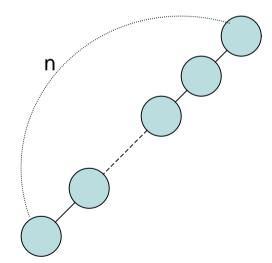
A balanced binary search tree

Review

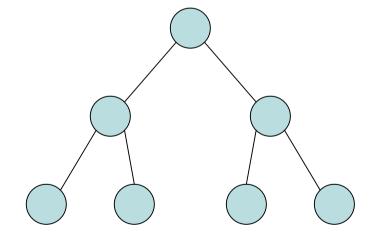
- Binary Search Tree (BST) is a good data structure for searching algorithm
- It supports
 - Search, find predecessor, find successor, find minimum, find maximum, insertion, deletion

Motivation

- The performance of BST is related to its height h
 - All the operation in the previous page is O(h)



Worst case: h = O(n)



Best case: $h = O(\log n)$

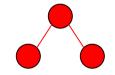
Motivation

- We want a balanced binary search tree
 - Height of the tree is O(log n)

 Red-Black Tree is one of the balanced binary search tree

Property

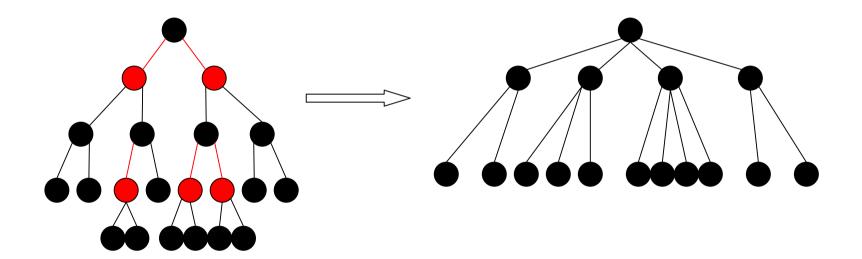
- 1. Every node is either red or black
- 2. The root is black
- If a node is red, then both its children are black



- 4. For each node, all path from the node to descendant leaves contain the same number of black nodes
 - All path from the node have the same black height

Property

Compact



Property

The height of compacted tree is O(log n)

 Since no two red nodes are connected, the height of the original tree is at most 2 log n = O(log n)

Operation

Since red-black tree is a balanced BST, it supports
 Search(tree, key)
 Predecessor(tree, key)
 Successor(tree, key)
 Minimum(tree)

Maximum(tree)

in O(log n)-time

 It also support insertion and deletion with a little bit complicated step

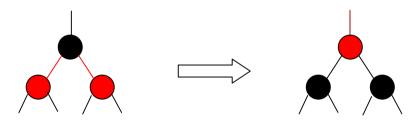
Maintain Property

 Insertion and Deletion will violate the property of red-black tree

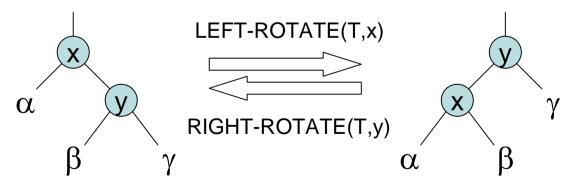
- How to maintain the property?
 - by Changing Color or Rotation

Maintain Property

Changing color

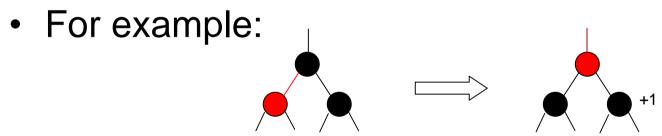


Rotation



Common Problem

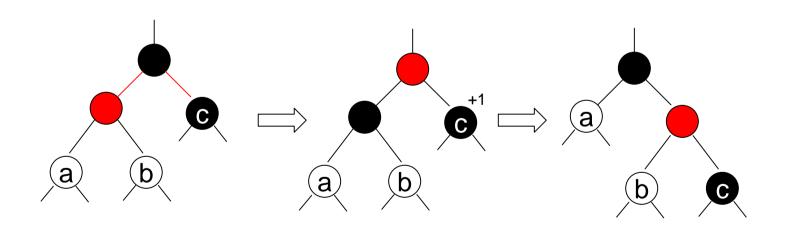
- A problem during Insertion and Deletion is Doubly-Black node
- Doubly-Black node is a node which has color of two black, it violate property 1



(+1 means the node need another black to maintain the invariant of the property)

Common Problem

 A common problem and its solution are as following



Insertion

- When insert a node z, we set the color of z to red
- This may violate property 2 and 3

 For property 2, we set the color of root to black after insertion

Insertion

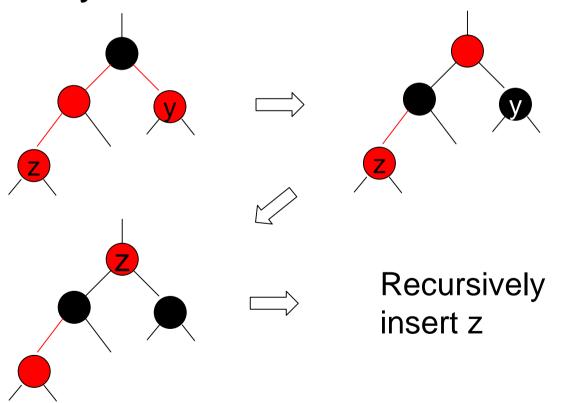
- To fix property 3, we will consider if
 - The z's parent is a left child or right child
 - The color of z's uncle y is red or black
 - z is a left child or right child
- We consider the z's parent is a left child first, the other case can be done by symmetric operation

Insertion

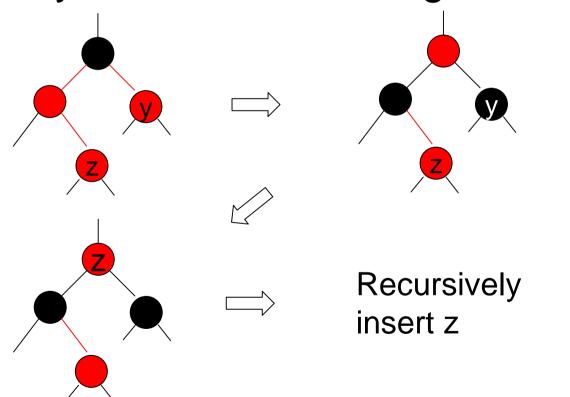
There are 4 cases:

- Case 1: y is red and z is a left child
- Case 2: y is red and z is a right child
- Case 3: y is black and z is a left child
- Case 4: y is black and z is a right child

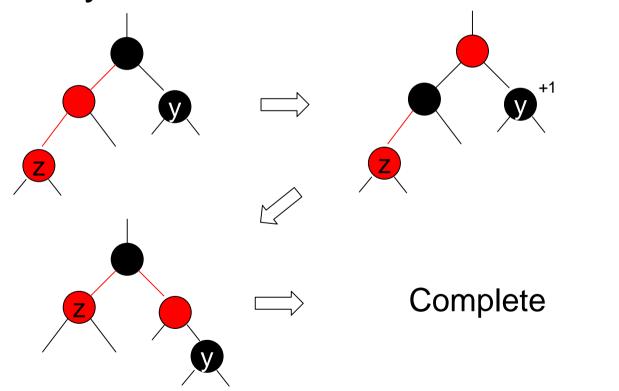
Case 1: y is red and z is a left child



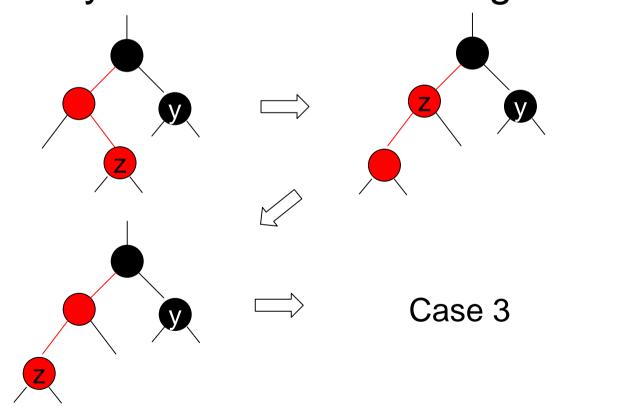
Case 2: y is red and z is a right child



Case 3: y is black and z is a left child



Case 4: y is black and z is a right child



Insertion Analysis

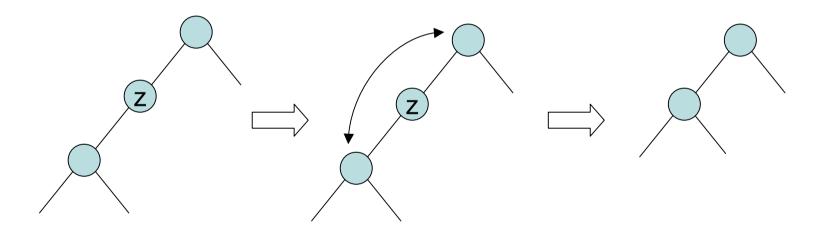
- Case 1 and 2 move z up 2 levels
- Case 3 and 4 will terminate after some number of steps
- The height of tree is finite and is O(log n)
- The running time is O(log n)
- At most 2 rotations

Deletion Review

- Review deletion of BST
- To delete a node z, there are 3 cases
- Case1: z has no child

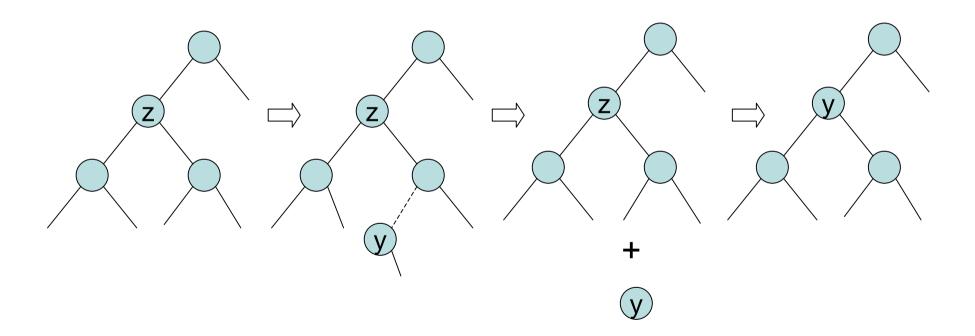
Deletion Review

Case 2: z has one child



Deletion Review

Case 3: z has two children



- From now on, we always call the deleted node to be z
- If z is red, it won't violate any property
- If z is a leaf, it won't violate any property
- Otherwise z is black and has a child, it will violate property 2, 3, and 4
- For property 2, set the color of root to black after deletion

To fix property 3 and 4:

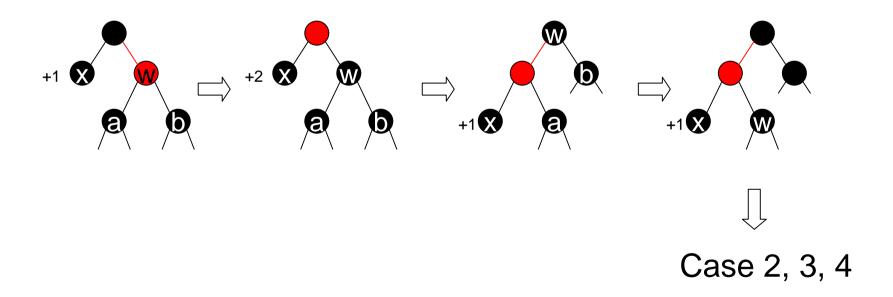
- If z's child x (which is the replacing node) is red, set x to black. Done!
- If x is black, add another black to x, so that x will be a doubly black node, and property 3 and 4 are fixed. But property 1 is violated

- To fix property 1, we will consider if
 - x is a left child or right child
 - The color of x's sibling w is red or black
 - The colors of w's children
- We consider x is a left child first, the other case can be done by symmetric operation

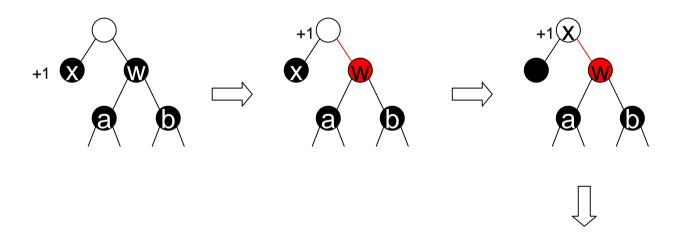
There are 4 cases:

- Case 1: w is red
- Case 2: w is black, both w's children are black
- Case 3: w is black, w's left child is red,
 w's right child is black
- Case 4: w is black, w's right child is red

Case 1: w is red

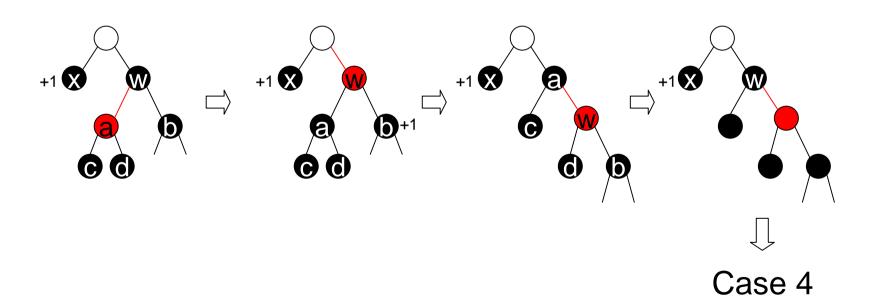


 Case 2: w is black, both w's children are black

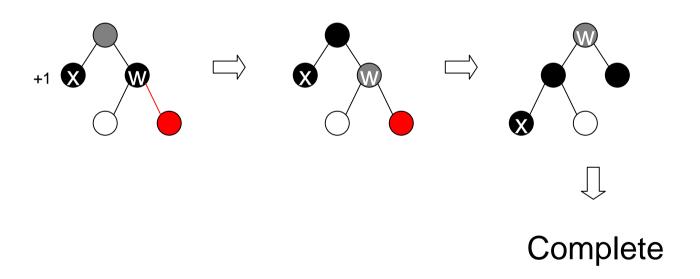


Recursively delete x

 Case 3: w is black, w's left child is red, w's right child is black



Case 4: w is black, w's right child is red



Deletion Analysis

- Case 2 move x up 1 level
- Case 1, 3 and 4 will terminate after some number of steps
- The height of tree is finite and is O(log n)
- The running time is O(log n)
- At most 3 rotations

Conclusion

 Red-Black Tree is a balanced binary search tree which supports the operation search, find predecessor, find successor, find minimum, find maximum, insertion and deletion in O(log n)-time