Hash table

Speaker: MARK
Outline

- **Introduction**
 - Direct addressing table
 - Hash table

- **Hash function**
 - Division
 - Mid-square
 - Folding

- **Collision & Overflow handing**
 - Chaining
 - Open addressing
Introduction

- Many applications require a dynamic set S to support the following dictionary operations:
 - **Search**(k): check if k is in S
 - **Insert**(k): insert k into S
 - **Delete**(k): delete k from S
- **Hash table**: an effective data structure for implementing dictionaries
Definitions

- **U**: a set of universe keys
- **K**: a dynamic set of actual keys
 - Like an application needs in which each element has a key drawn from the universe \(U = \{0, 1, \ldots, m-1\} \)
- **T**: the table denoted by \(T[0 \sim m-1] \),
 - in which each position, or slot, corresponds to a key in the universe \(U \).
Direct addressing table

- **Ex.**
 - Key = 2
 - Name = John
 - ...
 - ...
 - ...

- Search time = Insert time = Delete time = $O(1)$
Direct addressing table

- The difficulty with direct addressing is obvious:
 - The table T size $= \mathcal{O}(|U|)$
 - If $|K| \ll |U|$, then use too much spaces.

- Time is money! Space is money, too!?
What is hashing?

- **Hashing** has following advantages:
 - Use hashing to search, data need not be sorted
 - Without collision & overflow, search only takes O(1) time. Data size is not concerned
 - Security. If you do not know the hash function, you cannot get data
Hash table

- With direct addressing,
 - an element with key k is stored in slot k
- With hashing,
 - this element is stored in slot $h(k)$
Hash function

- A good hash function satisfies (approximately) the assumption of *simple uniform hashing*:

 Each key is equally likely to hash to *any of the* m *slots*, independently of where any other key has hashed to.
For example, if the keys k are known to be \textit{random real numbers} independently and uniformly distributed in the range $0 \leq k < 1$, the hash function

$$h(k) = \lfloor km \rfloor$$

satisfies the condition of simple uniform hashing.
Hash function

- **Interpreting keys as natural numbers**

 Most hash functions assume that the universe of keys is the set $N = \{0, 1, 2, \ldots\}$ of natural numbers.

- Ex. Key ‘pt’
 - $p = 112$ & $t = 116$ in ASCII table
 - as a radix-128 integer,
 - ‘pt’ = $(112 \cdot 128) + 116 = 14452$
(1) Division

- Mapping a key k into one of m slots by taking the remainder of k divided by m

\[h(k) = k \mod m \]

- Ex. $m = 12$, $k = 100$, then $h(k) = 4$

- Prime number m may be a good choice!
(2) Mid-square

- Mapping a key \(k \) into one of \(m \) slots by getting the middle some digits from value \(k^2 \)

- \(h(k) = k^2 \) get middle (\(\log m \)) digits

- Ex. \(m = 10000, \ k = 113586, \log m = 4 \)

\[
\begin{align*}
h(k) &= 113586^2 \\
&= 12901779369 \\
&= 1779
\end{align*}
\]
(3) Folding

- Divide \(k \) into some sections, besides the last section, have same length. Then add these sections together.
 - a. shift folding
 - b. folding at the boundaries

- \(H(k) = \sum \text{(section divided from } k) \text{ by a or b} \)
(3) Folding

Ex, k = 12320324111220, section length = 3

<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

shift folding folding at the boundaries

\[
\begin{array}{c}
P1 \\
P2 \\
P3 \\
P4 \\
P5 \\
\end{array} \begin{array}{c}123 \\
203 \\
241 \\
112 \\
20 \\
\end{array} = 879
\]
\[
\begin{array}{c}
P1 \\
P2 \\
P3 \\
P4 \\
P5 \\
\end{array} \begin{array}{c}123 \\
302 \\
241 \\
211 \\
20 \\
\end{array} = 897
\]
Collision & Overflow handing

Collision!
(1) Chaining

In chaining, we put all the elements that hash to the same slot in a linked list.
(1) Chaining analysis

- **Worst-case insert time** = \(O(1) \)
 - insert into the beginning of each link list

- **Worst-case search time** = \(\Theta(n) \)
 - Every key mapping to the same slot
 - Ex. \(h(1) = h(2) = h(3) = \ldots = h(n) = x \)
 - then search key ‘1’
(1) Chaining analysis

- For \(j = 0, 1, \ldots, m-1 \), let us denote the length of the list \(T[j] \) by \(n_j \), so that

\[
 n = n_0 + n_1 + \ldots + n_{m-1}
\]

- the average value of \(n_j \) is \(\mathbb{E}[n_j] = \alpha = n/m \).

- Average search time = \(\Theta(1 + \alpha) \)
(1) Chaining analysis

- Unsuccessful search time $= \Theta(1 + \alpha)$

- The expected time to search unsuccessfully for a key k is the expected time to search to the end of list $T[h(k)]$, which has expected length $E[n_{h(k)}] = \alpha$.

(1) Chaining analysis

- Successful search time = $\Theta(1 + \alpha)$
- The situation for a successful search is slightly different, since each list is not equally likely to be searched.
- Instead, the probability that a list is searched is proportional to the number of elements it contains.
(1) Chaining analysis

- For keys k_i and k_j, we define

 indicator random variable $X_{ij} = I\{h(k_i) = h(k_j)\}$

- Under the assumption of simple uniform hashing, we have

 $Pr\{h(k_i) = h(k_j)\} = 1/m$, and $E[X_{ij}] = 1/m$

- The expected number of elements examined in a *successful search* is:
(1) Chaining analysis

\[
E \left[\frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} X_{ij} \right) \right] = \Theta \left(2 + \frac{\alpha}{2} - \frac{\alpha}{2n} \right) = \Theta \left(1 + \frac{\alpha}{2} \right)
\]
(1) Chaining analysis

- $\Theta(1 + \alpha)$ means?

- If the number of hash-table slots is at least proportional to the number of elements in the table, we have

 \[n = O(m) \text{ and, } \alpha = n/m = O(m)/m = O(1). \]

- Thus, searching takes constant time on average.
(2) Open addressing

- In open addressing, all elements are stored in the hash table itself.
- That is, each table slot contains either an element of the dynamic set or NIL.
- The hash table can "fill up"
 => no further insertions can be made;
- load factor $\alpha = n/m \leq 1$.

The assumption of *uniform hashing*: we assume that each key is equally likely to have any of the $m!$ permutations of $<0, 1, ..., m–1>$ as its probe sequence.

Linear probing, *Quadratic probing*, and *Double hashing* are commonly used to compute the probe sequences required for open addressing.
(2.1) Linear Probing

\[h(k, i) = (h'(k) + i) \mod m, \]

\(h' : \text{auxiliary hash function} \)
\(i : 0, 1, \ldots, m-1 \)
(2.2) Quadratic Probing

- \(h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m \),
 - \(h' \): auxiliary hash function
 - \(c_1, c_2 \neq 0 \): auxiliary constants
 - \(i : 0, 1, ..., m-1 \)

- This method works much better than linear probing, but to make full use of the hash table,
- the values of \(c_1, c_2, \) and \(m \) are constrained.
(2.3) Double hashing

- $h(k, i) = (h_1(k) + ih_2(k)) \mod m$
 - h_1, h_2: auxiliary hash function
 - $i: 0, 1, \ldots, m-1$

- Double hashing is one of the best methods available for open addressing
- because the permutations produced have many of the characteristics of randomly chosen permutations.
(2) Open addressing

- These techniques all guarantee that $\langle h(k, 0), h(k, 1), \ldots, h(k, m-1) \rangle$ is a permutation of $\langle 0, 1, \ldots, m-1 \rangle$ for each key k.

- **None** of these techniques *fulfills* the assumption of uniform hashing.

- **Double hashing** has the greatest number of probe sequences and, as one might expect, seems to give the best results.
(2) Open addressing analysis

Given an open-address hash table with load factor \(\alpha = \frac{n}{m} < 1 \), the expected number of probes in an unsuccessful search is at most \(\frac{1}{1 - \alpha} \), assuming uniform hashing.

- Define the random variable \(X \) to be the number of probes made in an unsuccessful search.
- Define the event \(A_i \), for \(i = 1, 2, \ldots \), to be the event that there is an \(i\)th probe and it is to an occupied slot.
(2) Open addressing analysis

- Then the event \(\{ X \geq i \} = A_1 \cap A_2 \cap \cdots \cap A_{i-1} \).
- We will bound \(\Pr\{ X \geq i \} \) by bounding

\[
\Pr \{ A_1 \cap A_2 \cap \cdots \cap A_{i-1} \} = \Pr\{ A_1 \} \cdot \Pr\{ A_2 | A_1 \} \cdot \Pr\{ A_3 | A_1 \cap A_2 \} \cdot \Pr\{ A_{i-1} | A_1 \cap A_2 \cap \cdots \cap A_{i-2} \}
\]

\[
\Pr\{ X \geq i \} = \frac{n}{m} \cdot \frac{n-1}{m-1} \cdot \frac{n-2}{m-2} \cdots \frac{n-i+2}{m-i+2}
\]

\[
\leq \left(\frac{n}{m} \right)^{i-1}
\]

\[
= \alpha^{i-1}.
\]
(2) Open addressing analysis

If α is a constant, an unsuccessful search runs in $O(1)$ time.

Ex. average number of probes in an unsuccessful search:

- If the hash table is half full:
 at most $1/(1 - 0.5) = 2$
- If the hash table is 90% full:
 at most $1/(1 - 0.9) = 10$
(2) Open addressing analysis

Inserting an element into an open-address hash table with load factor α requires at most $\frac{1}{1 - \alpha}$ probes on average, assuming uniform hashing.

- Inserting a key requires an unsuccessful search followed by placement of the key in the first empty slot found.
- Thus, the expected number of probes is at most $\frac{1}{1 - \alpha}$.
(2) Open addressing analysis

Given an open-address hash table with load factor $\alpha < 1$, the expected number of probes in a successful search is at most $\frac{1}{\alpha} \ln \frac{1}{1 - \alpha}$, assuming uniform hashing and assuming that each key in the table is equally likely to be searched for.
(2) Open addressing analysis

- if \(k \) was the \((i + 1)st\) key inserted into the hash table, the expected number of probes made in a search for \(k \) is at most \(1/(1 - i/m) = m/(m-i) \).

- Averaging over all \(n \) keys in the hash table gives us the average number of probes in a successful search:

\[
\frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m-i} = \frac{m}{n} \sum_{i=0}^{n-1} \frac{1}{m-i} = \frac{1}{\alpha} (H_m - H_{m-n}),
\]
(2) Open addressing analysis

\[
\frac{1}{\alpha} (H_m - H_{m-n}) = \frac{1}{\alpha} \sum_{k=m-n+1}^{m} \frac{1}{k} \\
\leq \frac{1}{\alpha} \int_{m-n}^{m} \frac{1}{x} \, dx \quad \text{(by inequality (A.12))} \\
= \frac{1}{\alpha} \ln \frac{m}{m-n} \\
= \frac{1}{\alpha} \ln \frac{1}{1-\alpha}
\]

Ex. the expected number of probes in a \textit{successful search} is:

- If the hash table is \textbf{half full}: less than 1.387
- If the hash table is \textbf{90\% full}: less than 2.559