
1

CS4311
Design and Analysis of

Algorithms

Introduction to
External Memory Algorithms

2

About this tutorial

•Introduce External Memory (EM) Model
•How do we perform sorting ?

Our slides are based on the slides by
G. Brodal and R. Fagerberg

See their web page for more info:
http://www.daimi.au.dk/~gerth/emF03

3

Dealing with Massive Data
•In some applications, we need

to handle a lot of data
• so much that our RAM is

not large enough to handle
•Ex 1: Sorting most recent 8G

Google search requests
•Ex 2: Finding LCS between the

DNAs of human & mouse

4

Dealing with Massive Data
•Since RAM is not large enough, we need

the hard-disk to help the computation

•Hard-disk is useful:
1. can store input data (obvious)

2. can store intermediate result

•However, there are new concern, because
accessing data in the hard-disk is much
slower than accessing data in RAM

5

EM Model [Aggarwal-Vitter, 88]

•Computer is divided into three parts:
CPU, RAM, Hard-disk

•CPU can work with data in RAM directly
•But not directly with data in hard-disk

•RAM can read data from hard-disk, or
write data to hard-disk, using the I/O
(input/output) operations

6

EM Model [Aggarwal-Vitter, 88]

•Size of RAM = M items
•Hard-disk is divided in contiguous pages

•Size of a disk page = B items
•In one I/O operation, we can

•read or write one page

•Complexity of an algorithm =
number of I/Os used

 That means, CPU processing is free !

7

Test Our Understanding
•Suppose we have a set of N numbers,

stored contiguously in the hard-disk

•How many I/Os to find max of the set?
Ans. O(N/B) I/Os

• Is this optimal ?
Ans. Yes. We must read all #s to find

max, which needs at least N/B I/Os

8

Sorting in External Memory
•We shall use the idea of Merge Sort to

sort N numbers in the external memory

•Recall: We can perform Merge Sort in a
bottom-up manner:

…

Round 1: Sort every 2 numbers

9

…

Round k: Sort every 2k numbers by
merging pairs of 2k-1 numbers

…

Round 2: Sort every 4 numbers by
merging pairs of 2 numbers

10

Sorting in External Memory
•Now, let us see if we can use Merge Sort

directly to sort things in external memory
•Suppose we have two sorted lists of #s,

which are placed in p pages and q pages:

Sorted numbers
(p pages)

Sorted numbers
(q pages)

11

Sorting in External Memory
•How can we merge them ?
•Method:

•Load 1st page from each list
 Must contain B smallest numbers

RAM

12

Sorting in External Memory
•Method (cont):

•CPU sorts the numbers in RAM
•RAM outputs B smallest #s in a pages

RAM

•Next, we should read another page for
merging…But which one ?

13

Sorting in External Memory
Lemma :

Suppose largest # in RAM is from List 1.
Then, all the next B smallest numbers are
not contained in the next page of List 1.

Based on the above lemma, we know which
page should be read next …

 we can repeatedly sort the remaining
 In total, O(p+q) I/Os

14

Sorting in External Memory
Thus, using Merge Sort,

•Each round takes O(N/B) I/Os
•there are O(log N) rounds
 Total I/O = O((N/B) log N)

Question: Can we improve it?
Recall: Our RAM can hold M pages …

15

Sorting in External Memory
At Round 1, instead of sorting 2 numbers,

let us sort M numbers together ! (How ??)

Then, Round 1 still takes O(N/B) I/Os, but
we begin with N/M sorted lists
 Only needs log (N/M) more rounds

Total I/O = O((N/B) log (N/M))

Question: Can we further improve it?

16

Sorting in External Memory
•In current Merge Sort, we are merging

two lists at a time…
•What if we merge more lists at a time?

•Precisely, suppose we have k sorted lists,
where List i occupies pi pages

•How can we merge them ?

17

Sorting in External Memory
•Method :

•Load 1st page from each list
 Must contain B smallest numbers

RAM…

18

Sorting in External Memory
•Method (cont):

•Next, outputs B smallest #s in a pages

•Now, do we read a page? Or output more ?

RAM…

19

Sorting in External Memory
Consider the following minor change :
•Suppose we maintain an extra page, called

output buffer, in RAM
•We try to fill the output buffer with the

correct smallest elements, and once the
buffer is full, we output it

•When we fill the output buffer, as soon as
some list L has run out of #s in RAM, we
read the next page from L

20

Sorting in External Memory

Lemma:
•When the output buffer is full, it

always contains the next smallest B #s
•Apart from the #s in output buffer,

each list has at most B #s in RAM

21

Sorting in External Memory

•The previous lemma implies that we can
repeatedly read pages from the k lists, fill
the output buffer, and get a sorted list
eventually
 If List i contains pi pages,

Total I/O = O(p1 + p2 + …+ pk)

•Also, it implies that RAM has at most k+1
pages at any time  M (k+1)B is enough

22

Sorting in External Memory

•So, we can perform sorting with k-way
merging as follows:
1. Create N/M sorted lists of length M
2. At round j = 1, 2, …

Merge k sorted list of length kj-1 M,
forming a sorted list of length kj M

 # rounds = logk (N/M)
 Total I/O = O((N/B) logk (N/M))

23

Sorting in External Memory

•The larger the k, the smaller the term:
O((N/B) logk (N/M))

•Since the only restriction on k is that:
M (k+1)B

•Thus, we can sort the N numbers in :
O((N/B) log(M/B –1) (N/M)) I/Os

24

Sorting in External Memory

•Usually, M À B, so that

log (M/B –1) = (log (M/B))

•Then, sorting I/O becomes:

O((N/B) logM/B (N/M)) I/Os

= O((N/B) logM/B (N/B)) I/Os

 Better than 2-way Merge Sort: O((N/B) log (N/M))

25

Sorting in External Memory

•In fact, we can show that if we can only
use comparison to deduce the relative
order between the input numbers,
then, sorting in external memory requires

((N/B) logM/B (N/B)) I/Os
in the worst case

 (M/B)-way Merge Sort is optimal !!

