CS4311

Design and Analysis of
Algorithms

Introduction to
External Memory Algorithms

About this tutorial

* Introduce External Memory (EM) Model
How do we perform sorting ?

Our slides are based on the slides by
G. Brodal and R. Fagerberg

See their web page for more info:
http://www.daimi.au.dk/~gerth/emF03

+ Ex 1. Sorting most recent 8G

+ Ex 2: Finding LCS between the

Dealing with Massive Data

 In some applications, we need
to handle a lot of data

so much that our RAM is
not large enough to handle

Google search requests

DNAs of human & mouse <

Dealing with Massive Data

» Since RAM is not large enough, we need
the hard-disk to help the computation

- Hard-disk is useful:

1. can store input data (obvious)
2. can store intermediate result

- However, there are new concern, because

accessing data in the hard-disk is much
slower than accessing data in RAM

EM Model [Aggarwal-Vitter, 88]

+ Computer is divided into three parts:
CPU, RAM, Hard-disk

» CPU can work with data in RAM directly
* But not directly with data in hard-disk

- RAM can read data from hard-disk, or

write data to hard-disk, using the I/0
(input/output) operations

EM Model [Aggarwal-Vitter, 88]

-+ Size of RAM = M items
* Hard-disk is divided in contiguous pages

+ Size of a disk page = B items
* Inone I/O operation, we can
* read or write one page

+ Complexity of an algorithm =
number of I/Os used

= That means, CPU processing is free |

Test Our Understanding

» Suppose we have a set of N numbers,
stored contiguously in the hard-disk

* How many I/Os to find max of the set?
Ans. O(N/B)I/Os

Is this optimal ?

Ans. Yes. We must read all #s to find
max, which needs at least N/B I/Os

v

Sorting in External Memory

* We shall use the idea of Merge Sort to
sort N numbers in the external memory

* Recall: We can perform Merge Sort ina
bottom-up manner:

N DD DN D

Round 1: Sort every 2 numbers

£

>

>

s

Round 2: Sort every 4 numbers by
merging pairs of 2 numbers

£

>

>

Round k: Sort every 2k numbers by
merging pairs of 2%! numbers

Sorting in External Memory

* Now, let us see if we can use Merge Sort

directly to sort things in external memory

* Suppose we have two sorted lists of #s,
which are placed in p pages and q pages:

{\ Sorted numbers
> (p pages)

> Sorted numbers

“U (9 pages)

10

Sorting in External Memory

* How can we merge them ?
* Method:

* Load 15" page from each list
= Must contain B smallest numbers

RAM

11

Sorting in External Memory

+ Method (cont):
»+ CPU sorts the numbers in RAM
* RAM outputs B smallest #s in a pages

]

T

RAM mm)

/

—

* Next, we should read another page for

merging... But which one ?

12

Sorting in External Memory

Lemma
Suppose largest # in RAM is from List 1.

Then, all the next B smallest numbers are
not contained in the next page of List 1.

Based on the above lemma, we know which
page should be read next ...

=> we can repeatedly sort the remaining
= In total, O(p+q) I/Os

13

Sorting in External Memory

Thus, using Merge Sort,
+ Each round takes O(N/B) I/0Os
* there are O(log N) rounds
= Total I/0 = O((N/B) log N)

Question: Can we improve it?
Recall: Our RAM can hold M pages ...

14

Sorting in External Memory

At Round 1, instead of sorting 2 numbers,
let us sort M numbers together | (How 2?)

Then, Round 1 still takes O(N/B) I/0s, but
we begin with N/M sorted lists

= Only needs log (N/M) more rounds
= Total I/0 = O((N/B) log (N/M))

Question: Can we further improve it?

15

Sorting in External Memory

* In current Merge Sort, we are merging
two lists at a time...

* What if we merge more lists at a time?

* Precisely, suppose we have k sorted lists,
where List i occupies p; pages

* How can we merge them ?

16

Sorting in External Memory

+ Method :

* Load 15" page from each list
= Must contain B smallest numbers

N\

\

e

N

\

RAM

17

Sorting in External Memory

+ Method (cont):

* Next, outputs B smallest #s in a pages

N\

\

e

N

\

RAM ==

]

* Now, do we read a page? Or output more ?
18

Sorting in External Memory

Consider the following minor change :

» Suppose we maintain an extra page, called
output buffer, in RAM

+ We try to fill the output buffer with the
correct smallest elements, and once the
buffer is full, we output it

* When we fill the output buffer, as soon as
some list L has run out of #s in RAM, we
read the next page from L

19

Sorting in External Memory

Lemma:

* When the output buffer is full, it
always contains the next smallest B #s

- Apart from the #s in output buffer,
each list has at most B #s in RAM

20

Sorting in External Memory

* The previous lemma implies that we can
repeatedly read pages from the k lists, fill
the output buffer, and get a sorted list
eventually

= If List i contains p; pages,
Total I/0 = O(p;+ p,+ ... + py)

* Also, it implies that RAM has at most k+1
pages at any time = M > (k+1)B is enough

21

Sorting in External Memory

* So, we can perform sorting with k-way
merging as follows:

1. Create N/M sorted lists of length M
2. Atround j=1,2, ..

Merge k sorted list of length ki-1 M,
forming a sorted list of length ki M

= # rounds = log, (N/M)
= Total I/0 = O((N/B) log, (N/M))

22

Sorting in External Memory

* The larger the k, the smaller the term:

O((N/B) log, (N/M))

» Since the only restriction on k is that:

M > (k+1)B

+ Thus, we can sort the N numbers in :

O((N/B) log s 1y (N/M)) I/Os

23

Sorting in External Memory
* Usually, M > B, so that
log (M/B-1) = ®O(log (M/B))

»+ Then, sorting I/0 becomes:

O((N/B) logy 5 (N/M)) I/Os
= O((N/B) logy s (N/B)) I/Os

= Better than 2-way Merge Sort: O((N/B) log (N/M))

24

Sorting in External Memory

» In fact, we can show that if we can only
use comparison to deduce the relative
order between the input numbers,

then, sorting in external memory requires

C2((N/B) logy s (N/B)) I/Os
in the worst case

2> (M/B)-way Merge Sort is optimal !

25

