CS4311 Design and Analysis of Algorithms

Introduction to External Memory Algorithms

1

About this tutorial

- Introduce External Memory (EM) Model
- How do we perform sorting?

Our slides are based on the slides by G. Brodal and R. Fagerberg See their web page for more info: http://www.daimi.au.dk/~gerth/emF03

Dealing with Massive Data

- In some applications, we need to handle a lot of data
 - so much that our RAM is not large enough to handle
- Ex 1: Sorting most recent 8G Google search requests

Dealing with Massive Data

- Since RAM is not large enough, we need the hard-disk to help the computation
- Hard-disk is useful:
 - 1. can store input data (obvious)
 - 2. can store intermediate result
- However, there are new concern, because accessing data in the hard-disk is much slower than accessing data in RAM

EM Model [Aggarwal-Vitter, 88]

- Computer is divided into three parts:
 CPU, RAM, Hard-disk
- CPU can work with data in RAM directly
 - But not directly with data in hard-disk
- RAM can read data from hard-disk, or write data to hard-disk, using the I/O (input/output) operations

EM Model [Aggarwal-Vitter, 88]

- Size of RAM = M items
- Hard-disk is divided in contiguous pages
 - Size of a disk page = B items
- In one I/O operation, we can
 - read or write one page
- Complexity of an algorithm = number of I/Os used
 - → That means, CPU processing is free !

Test Our Understanding

- Suppose we have a set of N numbers, stored contiguously in the hard-disk
- How many I/Os to find max of the set?
 Ans. O(N/B) I/Os
- Is this optimal?

Ans. Yes. We must read all #s to find max, which needs at least N/B I/Os

- We shall use the idea of Merge Sort to sort N numbers in the external memory
- Recall: We can perform Merge Sort in a bottom-up manner:

Round 1: Sort every 2 numbers

Round 2: Sort every 4 numbers by merging pairs of 2 numbers

Round k: Sort every 2^k numbers by merging pairs of 2^{k-1} numbers

- Now, let us see if we can use Merge Sort directly to sort things in external memory
- Suppose we have two sorted lists of #s, which are placed in p pages and q pages:

- How can we merge them ?
- Method:
 - Load 1st page from each list
 - → Must contain B smallest numbers

- Method (cont):
 - CPU sorts the numbers in RAM
 - RAM outputs B smallest #s in a pages

• Next, we should read another page for merging... But which one ?

Lemma :

Suppose largest # in RAM is from List 1. Then, all the next B smallest numbers are not contained in the next page of List 1.

Based on the above lemma, we know which page should be read next ...

 \rightarrow we can repeatedly sort the remaining \rightarrow In total O(p+q) T/Oc

Thus, using Merge Sort,

- Each round takes O(N/B) I/Os
- there are O(log N) rounds
- \rightarrow Total I/O = O((N/B) log N)

Question: Can we improve it? Recall: Our RAM can hold M pages ...

At Round 1, instead of sorting 2 numbers, let us sort M numbers together ! (How ??)

- Then, Round 1 still takes O(N/B) I/Os, but we begin with N/M sorted lists
 - → Only needs log (N/M) more rounds
- → Total I/O = O((N/B) log (N/M))

Question: Can we further improve it?

- In current Merge Sort, we are merging two lists at a time...
- What if we merge more lists at a time?
- Precisely, suppose we have k sorted lists, where List i occupies p_i pages
- How can we merge them?

- Method :
 - Load 1st page from each list

→ Must contain B smallest numbers

- Method (cont):
 - Next, outputs B smallest #s in a pages

• Now, do we read a page? Or output more?

Consider the following minor change :

- Suppose we maintain an extra page, called output buffer, in RAM
- We try to fill the output buffer with the correct smallest elements, and once the buffer is full, we output it
- When we fill the output buffer, as soon as some list L has run out of #s in RAM, we read the next page from L

Lemma:

- When the output buffer is full, it always contains the next smallest B #s
- Apart from the #s in output buffer, each list has at most B #s in RAM

- The previous lemma implies that we can repeatedly read pages from the k lists, fill the output buffer, and get a sorted list eventually
 - → If List i contains p_i pages, Total I/O = $O(p_1 + p_2 + ... + p_k)$
- Also, it implies that RAM has at most k+1 pages at any time $\Rightarrow M \ge (k+1)B$ is enough

- So, we can perform sorting with k-way merging as follows:
 - 1. Create N/M sorted lists of length M
 - At round j = 1, 2, ...
 Merge k sorted list of length k^{j-1} M, forming a sorted list of length k^j M
- \rightarrow # rounds = log_k (N/M)
- → Total I/O = O((N/B) log_k (N/M))

- The larger the k, the smaller the term: $O((N/B) \log_k (N/M))$
- Since the only restriction on k is that: $M \geq (k+1)B$
- Thus, we can sort the N numbers in : $O((N/B) \log_{(M/B-1)}(N/M))$ I/Os

• Usually, $M \gg B$, so that

 $\log (M/B - 1) = \Theta (\log (M/B))$

Then, sorting I/O becomes:

 $O((N/B) \log_{M/B} (N/M)) I/Os$ = $O((N/B) \log_{M/B} (N/B)) I/Os$

→ Better than 2-way Merge Sort: O((N/B) log(N/M))

• In fact, we can show that if we can only use comparison to deduce the relative order between the input numbers,

then, sorting in external memory requires

 $\Omega((N/B) \log_{M/B}(N/B))$ I/Os

in the worst case

→ (M/B)-way Merge Sort is optimal !!