
Binary Search Tree

Speaker 邱聖元

Outline

 Introduction
Operations
 Conclusion

Introduction

What’s a binary search tree?
– It’s a binary tree !
– For each node in a BST, the left subtree is

smaller than it; and the right subtree is
greater than it.

Introduction

 This is a simple BST

10

7

96

13

12 14

Introduction

 Is this a BST ?

25

19

228

27

24 31

NO! Because 24 is
less than 25

Introduction

Node structure

RightLeft

Key

Parent

Operations

 There are 3 common operations
– QUERY
– INSERT
– DELETE

Operation - Query

 The QUERY operation can be further spit
into
– Search
– Max/Min
– Successor/Predecessor

Operation - Search

 Search(T,k)
– search the BST T for a value k

Operation - Search

10

7

96

13

12 14

K=12

?

greatersmaller

Operation - Search

10

7

96

13

12 14

K=12

?

greatersmaller

Operation - Search

10

7

96

13

12 14

K=12

Operation - Search

 Search operation takes time O(h), where h
is the height of a BST

Operation –Min/Max

 For Min, we simply follow the left pointer
until we find a null node

Why? Because if it’s not the minimum node,
then the real min node must reside at
some node’s right subtree. By the property
of BST, it’s a contradiction

 Similar for Max
 Time complexity: O(h)

Operation Predecessor/Successor

 Successor(x)
– If we sort all elements in a BST to a sequence,

return the element just after x
– Time complexity: O(h)

Operation Predecessor/Successor

 Find Successor

if Right(x) exists, // Step 1

then return Min(Right(x)) ;
else // Step 2

Find the first ancestor of x whose left
subtree contains x ;

Operation Predecessor/Successor

Step1: X

Min

Operation Predecessor/Successor

Finding the
ancestor whose
left subtree
contains X

X

Step2:

Operation - Insert

 Insert(T,z)
– Insert a node with KEY=z into BST T
– Time complexity: O(h)

Operation - Insert

 Step1: if the tree is empty,
then Root(T)=z

 Step2: Pretending we are searching for z
in BST T, until we meet a null node

 Step3: Insert z

Operation - Insert

The light nodes
are compared
with k

30

17 52

2412

20 26

44 55

26

Operation - Delete

Delete(T,z)
– Delete a node with key=z from BST T
– Time complexity: O(h)

Operation - Delete

 Case 1: z has no child

55

32

25 48

57

65

Operation - Delete

55

32

25 48

57

65

We can simply
remove it from
the tree

Operation - Delete

 Case 2: z has one child

55

32

25 48

57

65

58 78

Operation - Delete

55

32

25 48

57

65

After removing
it, connect it’s
subtree to it’s
parent node

58 78

Operation - Delete

 Case 3: z has two child

55

32

25 48

61

6559

42

46

z

Operation - Delete

55

32

25 48

61

6559

42
successor

Find it’s successor

46

z

Operation - Delete

55

32

25 48

61

6559

Pull out successor,
and connect the
tree with it’s child

46

42

What if successor
has two children?

z

successor

Operation - Delete

What if the successor has two nodes?
Not possible ! Because if it has two nodes,

at least one of them is less than it, then in
the process of finding successor, we won't
pick it !

Operation - Delete

55

32

25 48

61

6559

42

Replace the key
with it’s successor

46

z
successor

Operation - Delete

Operation - Delete

Operation - Delete

 The original sequence is:

After deleting 32

25 32 42 46 48 55 59 61 65

25 42 46 48 55 59 61 65

Conclusion

 If we have a sorted sequence, and we want
to design a data structure for it

Array? Or BST?

Conclusion

 The Search time:

O(log n)Array

O(h)BST

Conclusion

We already know that n is fixed, but h
differs from how we insert those
elements !

n

A skew binary
search tree

Conclusion

 So why we still need BST?

 Easier insertion/deletion
And with some optimization, we can avoid

the worst case !

