
1

CS4311
Design and Analysis of

Algorithms

Tutorial: Assignment 3 Solution

2

Question 1

•A stair has n steps
•Each time, Jack can

walk up 1, 2, or 3 steps
•How many ways can

Jack walk up the stair ?

•Dynamic Programming

3

Question 1

Let Fk = #ways to walk k steps
•Recurrence:

F1 = 1 , F2 = 2, F3 = 4
Fk+3 = Fk + Fk+1 + Fk+2

•With DP, we can find each Fk in O(1) time
 total O(n) time to find Fn

Remark: Using matrix multiplication, we can find Fn in
O(log n) time

4

Question 2

•2 piles of coins
•2 players take turn to get coins
•Each turn, can either get

(1) any #coins from one pile, or
(2) same #coins from both piles

•Lose if does not get any coin in
his turn

5

Question 2
•Let

A(x,y) = L
if (x,y) is a losing combination,
and

A(x,y) = W
otherwise

6

Question 2
•Recurrence:

• A(0,0) = L
• A(i,j) = W

if A(s, j) = L for some 0 s i
or A(i, t) = L for some 0 t j
or A(i-k, j-k) = L for some 1 k min(i,j)

• A(i,j) = L otherwise

Reason: A combination is losing if and only if every move
yields a winning combination (for your opponent)

7

Question 2

•With DP, we can find each A(i,j) in O(n)
time (based on O(n) previously filled entries)

•To find A(x,y), there are x y = O(n2)
entries
 total O(n3) time

8

Question 3
•John has a car, which can travel n km

when gas tank is full
• k gas stations between SF and Seattle
•How to stop for fewest # of stations ?

•Greedy Algorithm

SF Seattle

9

Question 3
•Let s = rightmost (farthest) gas station

within the first n km from SF
Greedy Choice Lemma:

There is an optimal solution (with fewest
#stations) whose leftmost station is s

Proof: (By cut-and-paste)
•If s leftmost, we can replace leftmost

one by s  a feasible solution
•#stations cannot be increased  optimal

10

Question 3
Let S(x,y) = optimal #stations to travel from

x to y (starting with a full-tank at x)

Optimal Substructure Lemma:

If an optimal solution to travel from x to y
uses station s, then

1 + S(x,s) + S(s,y)

Proof: (By contradiction)

11

Question 3
•The lemmas imply this greedy algorithm :

1. Choose s1 = rightmost gas station from
SF within first n km ;

2. k = 1 ;
3. while (distance(sk, Seattle) n) {

Choose sk+1 = rightmost gas station
from sk within first n km ;

k = k + 1 ;
}

12

Question 4
•If a Min-Heap contains n elements

•Extract-Min takes O(log n) time
•Insert takes O(log n) time

•Design potential function so that:
•Extract-Min : O(1) amortized time
•Insert : O(log n) amortized time

13

Question 4
Solution 1:

For each node u,
(u) = size of subtree

rooted at u

Potential of a heap H :
(H) = sum of potentials

of all nodes

10

3

1 1

6

23

111

14

Question 4
Solution 2:

For each node u,
(u) = node-depth of u

Potential of a heap H :
(H) = sum of potentials

of all nodes

1

2

3 3

2

33

444

15

Question 5
•A sorted array supports fast searching,

but slow insertion
•Can we trade searching time for

insertion time ?

•Our Scheme:
Partition n elements based on its
binary representation of n

16

Question 5
•Let k = dlog (n+1)e, and

bk-1, bk-2, …, b2, b1, b0 

be binary representation of n

•Partition n elements to k sorted arrays
such that:
• if bj = 1, array Aj holds 2j elements
• if bj = 0, array Aj is empty

17

Question 5
•When binary representation is in the form:

?, ?, 0, 1, 1, …, 1 

•A further insertion will increase
#elements by 1, so that the new binary
representation becomes:

?, ?, 1, 0, 0, …, 0 

r one’s

r zero’s

18

Question 5
•In this case, we merge r sorted lists + new

element (total 2r elements) into one sorted list

•Total time : O(1+2+4+…+2r) = O(2r) time

•For m inserts,
#times we merge r sorted lists = O(m/2r)

Since r ranges from 0 to log n,

Total insertion: r 2rO(m/2r) = O(m log n) time

19

Question 6 (Bonus)
•An extension to Question 2
•We show a method to generate losing

combinations:

Set L0 = (0,0)
for k = 1,2, …{

Set v = smallest unseen positive # ;
Set Lk = (v, v+k) ;

}

20

Question 6 (Bonus)
L0 = (0,0)
for k = 1,2, …{

v = smallest unseen
postive # ;

Lk = (v, v+k) ;
}

Sample Run:

L0 = (0,0)
L1 = (1,2)
L2 = (3,5)
L3 = (4,7)
L4 = (6,10)
L5 = (8,13)
…

Interesting but unrelated fact:
This function generates each

positive # exactly once

21

Question 6 (Bonus)
6(a). At most one x with (x,x+k) losing :

Proof:
If on contrary, there are distinct x and y
with (x,x+k) and (y,y+k) both losing, we
can transform one to another in one move
(taking same # in both piles)  contradiction

6(b). At most one r with (x,r) losing :
Proof: Similar to 6(a)

22

Question 6 (Bonus)
6(c). Each Lk = (v,v+k) generated is losing :

Proof: We show that each move yields a
winning combination (for the opponent)
Case 1: Taking in first pile:
 By 6(b), (v’,v+k) must be winning (why?)

Case 2: Taking from both piles:
 By 6(b), (v’,v’+k) must be winning (why?)

Case 3: next slide

23

Question 6 (Bonus)
6(c). Each Lk = (v,v+k) generated is losing :

Proof: …

Case 3: Taking from second pile:
(I) Taking at most k:

By 6(a), (v,v+k’) must be winning

(II) Taking more than k:
By 6(b), (v,v’) must be winning

24

Question 6 (Bonus)
6(d). After x iterations, Li must contain x

Proof:
The v value increases by at least one after
each iteration  v value of Lx is at least x

6(e). Total time for x iterations = O(n)
•The most time consuming step is to find

the smallest unseen integer
•Use array of size O(n) O(n) time

25

Question 6 (Bonus)
6(f). Decide (x,y) is losing takes O(n) time

Once all L0 to Lx are computed, we can
find the entry containing x
 By 6(b), we can determine if (x,y) is

losing in extra O(1) time

