
1

CS4311
Design and Analysis of

Algorithms

Tutorial: Assignment 3 Hints



2

Question 1

•A stair has n steps
•Each time, Jack can

walk up 1, 2, or 3 steps
•How many ways can

Jack walk up the stair ?

•Dynamic Programming



3

Question 2

•2 piles of coins
•2 players take turn to get coins
•Each turn, can either get

(1) any #coins from one pile, or
(2) same #coins from both piles

•Lose if does not get any coin in
his turn



4

Question 2

•Assume both players are clever
 some combination are losing

E.g., If initially, the piles contain
1 coin and 2 coins, respectively,
then we have only four ways of
getting coin in this turn …

(What are they?)



5

Question 2
Let (x,y) denote the status with

x coins and y coins in the piles
•4 ways to get coins from (1,2):

• Case 1: (1,2)  (0,2)
• Case 2: (1,2)  (1,1)
• Case 3: (1,2)  (1,0)
• Case 4: (1,2)  (0,1)

 All are losing  (1,2) is losing



6

Question 2
•In general, can we determine if

(x,y) is a losing combination?

•Dynamic Programming



7

Question 3
•John has a car, which can travel n km

when gas tank is full
• k gas stations between SF and Seattle
•How to stop for fewest # of stations ?

•Greedy Algorithm

SF Seattle



8

Question 4
•If a Min-Heap contains n elements

•Extract-Min takes O(log n) time
•Insert takes O(log n) time

•Design potential function so that:
•Extract-Min : O(1) amortized time
•Insert : O(log n) amortized time



9

Question 4
•Extract-Min deletes some leaf node
•Each node should store some potential to

prepare for its future deletion
•Potential function can be defined as the

sum of the potentials in each node

•Question:
What potential should we store in a node?

[There are also other ways to assign the potential]



10

Question 5
•A sorted array supports fast searching,

but slow insertion
•Can we trade searching time for

insertion time ?

•Our Scheme:
Partition n elements based on its
binary representation of n



11

Question 5
•Let k = dlog (n+1)e, and

bk-1, bk-2, …, b2, b1, b0 

be binary representation of n

•Partition n elements to k sorted arrays
such that:
• if bj = 1, array Aj holds 2j elements
• if bj = 0, array Aj is empty



12

Question 5
For example,

•when n = 5, we have 5(dec) = 101(bin)

 two non-empty arrays, one with 4
elements, one with 1 element

•when n = 11, we have 11(dec) = 1011(bin)

 three non-empty arrays, with 8, 2, 1
elements, respectively



13

Question 5
•Searching time: O(k log n) = O(log2 n)
•Insertion time:

•Have to change the partitioning & to
make sure each array is sorted

•How to do so with amortized insertion
time = O(log n) ?

•Aggregate Method should be the easiest
among the three methods



14

Question 6 (Bonus)
•An extension to Question 2
•We show a method to generate losing

combinations:

Set L0 = (0,0)
for k = 1,2, …{

Set v = smallest unseen positive # ;
Set Lk = (v, v+k) ;

}



15

Question 6 (Bonus)
L0 = (0,0)
for k = 1,2, …{

v = smallest unseen
postive # ;

Lk = (v, v+k) ;
}

Sample Run:

L0 = (0,0)
L1 = (1,2)
L2 = (3,5)
L3 = (4,7)
L4 = (6,10)
L5 = (8,13)
…

Interesting but unrelated fact:
This function generates each

positive # exactly once



16

Question 6 (Bonus)
•Part (a) and (b):

•properties about losing combinations

•Part (c):
•Only losing combinations are generated

•Part (d):
•a losing combination containing x must

be generated (in O(x) steps)

•Part (e) and (f): running time = O(n)


