CS4311

Design and Analysis of
Algorithms

Tutorial: Assignment 3 Hints

Question 1

* A stair has n steps
- Each time, Jack can

walk up 1, 2, or 3 steps

- How many ways can

Jack walk up the stair ?

» Dynamic Programming

Question 2

+ 2 piles of coins |
+ 2 players take turn to get coins /
- Each turn, can either get |

(1) any #coins from one pile, or

(2) same #coins from both piles
- Lose if does not get any coinin

his turn

Question 2

Assume both players are clever
=> some combination are losing

E.g., If initially, the piles contain
1 coin and 2 coins, respectively,
then we have only four ways of
getting coin in this turn ...

(What are they?)

Question 2

Let (x,y) denote the status with
X coins and y coins in the piles

* 4 ways to get coins from (1,2):
+ Case l: (1,2) > (0,2)
+ Case 2: (1,2)> (1,1)
. Case 3: (1,2) > (1,0)
. Case 4: (1,2) > (0.1)
= All are losing 2 (1,2) is losing

Question 2

- Ingeneral, can we determine if ...
(x,y) is a losing combination?

Dynamic Programing N

Question 3

+ John has a car, which can travel n km

when gas tank is full
k gas stations between SF and Seattle
+ How to stop for fewest # of stations ?

SF Seattle

]] |

* Greedy Algorithm

Question 4

* If a Min-Heap contains n elements
» Extract-Min takes O(log n) time
+ Insert takes O(log n) time

» Design potential function so that:
- Extract-Min : O(1) amortized time
» Insert: O(log n) amortized time

Question 4

Extract-Min deletes some leaf node

Each node should store some potential to
prepare for its future deletion

- Potential function can be defined as the

sum of the potentials in each node

- Question:
What potential should we store in a node?

[There are also other ways to assign the potential]

Question b

A sorted array supports fast searching,
but slow insertion

» Can we trade searching time for

iInsertion time ?

Our Scheme:

Partition n elements based on its
binary representation of n

10

Question b
* Let k = [log (n+1)], and

(by1, bz, . by, by, bg)
be binary representation of n

* Partition n elements to k sorted arrays
such that:

+ if b; =1, array A, holds 2! elements
+ if b;= 0, array A, is empty

11

Question b

For example,

- whenn=5, we have 5, = 101,

= two non-empty arrays, one with 4
elements, one with 1 element

* whenn-=11, we have 11 4 = 1011,

> three non-empty arrays, with 8, 2, 1
elements, respectively

12

Question b
» Searching time: O(k log n) = O(log? n)

- Insertion time:

* Have to change the partitioning & to
make sure each array is sorted

- How to do so with amortized insertion
time = O(log n) ?

» Aggregate Method should be the easiest
among the three methods

13

Question 6 (Bonus)

- An extension to Question 2
+ We show a method to generate losing

combinations:

Set L, =(0,0)

fork=12, .. {
Set v = smallest unseen positive # ;
Set L, = (v, v+Kk) ;

}

14

Question 6 (Bonus)

L, = (0,0) Sample Run:
for k = 1,2, { = (0,0)
v = smallest unseen L= (1,2)
postive # ; - (3.5)
Ly = (v, v+k) ; o
| D
_, = (6,
N L5 = (8,13)

Interesting but unrelated fact:
This function generates each
positive # exactly once

Question 6 (Bonus)

* Part (a) and (b):

» properties about losing combinations

» Part (c):

* Only losing combinations are generated

* Part (d):

» a losing combination containing x must
be generated (in O(x) steps)

* Part (e) and (f): running time = O(n)

16

