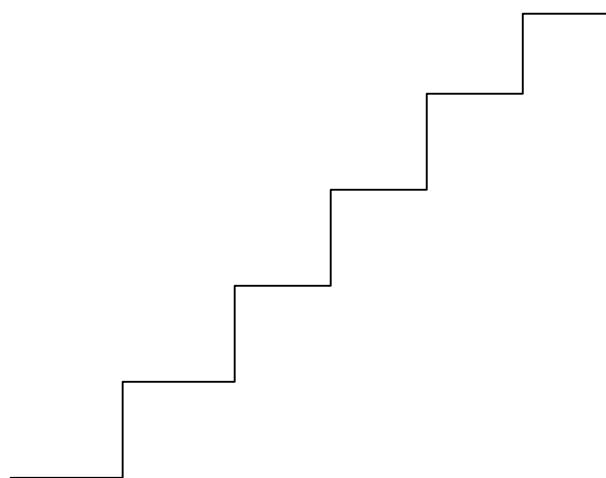


CS4311
Design and Analysis of
Algorithms

Tutorial: Assignment 3 Hints

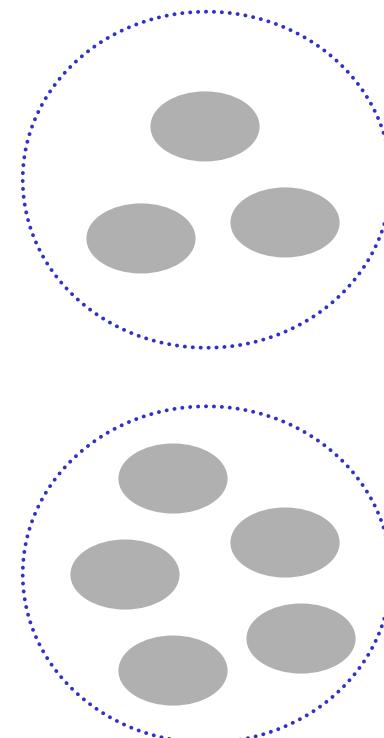
Question 1

- A stair has n steps
- Each time, Jack can walk up 1, 2, or 3 steps
- How many ways can Jack walk up the stair ?
- Dynamic Programming



Question 2

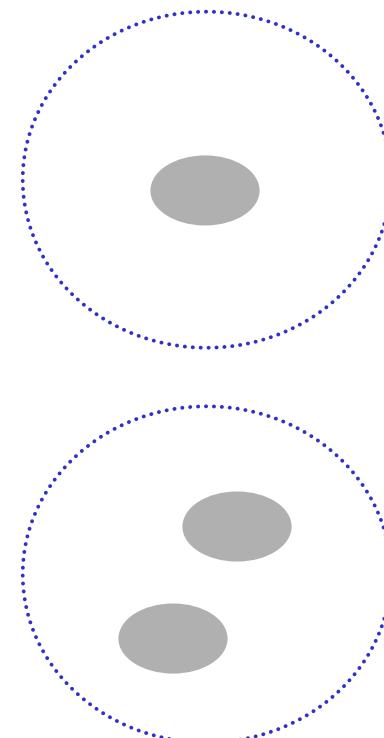
- 2 piles of coins
- 2 players take turn to get coins
- Each turn, can either get
 - (1) any #coins from one pile, or
 - (2) same #coins from **both** piles
- Lose if does not get any coin in his turn



Question 2

- Assume both players are clever
→ some combination are losing

E.g., If initially, the piles contain 1 coin and 2 coins, respectively, then we have only four ways of getting coin in this turn ...
(What are they?)



Question 2

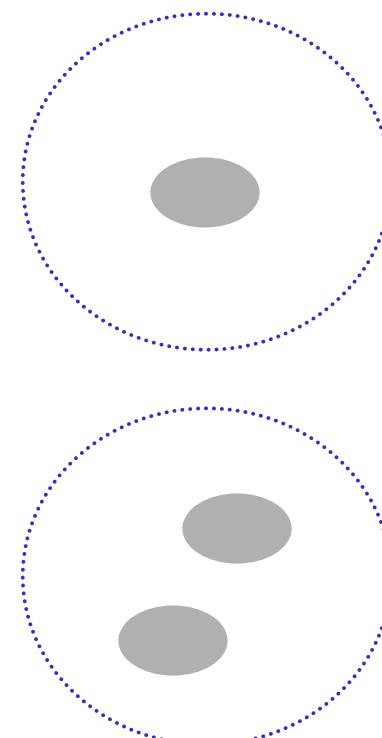
Let (x,y) denote the status with x coins and y coins in the piles

- 4 ways to get coins from $(1,2)$:
 - Case 1: $(1,2) \rightarrow (0,2)$
 - Case 2: $(1,2) \rightarrow (1,1)$
 - Case 3: $(1,2) \rightarrow (1,0)$
 - Case 4: $(1,2) \rightarrow (0,1)$
- All are losing → $(1,2)$ is losing



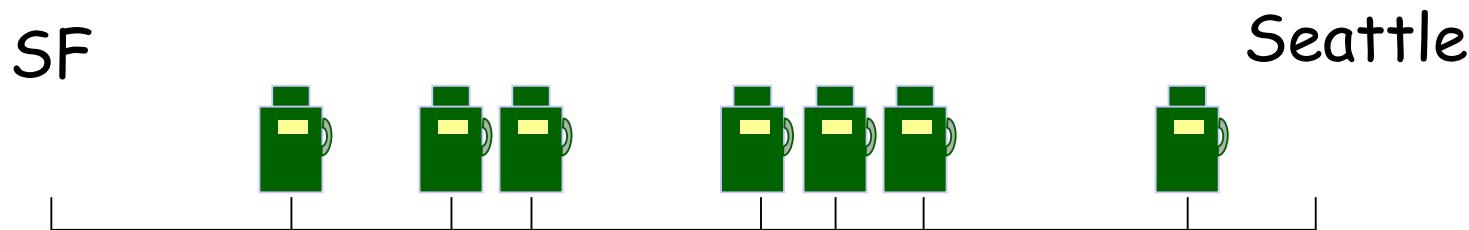
Question 2

- In general, can we determine if (x,y) is a losing combination?
- Dynamic Programming



Question 3

- John has a car, which can travel n km when gas tank is full
- k gas stations between SF and Seattle
- How to stop for fewest # of stations ?



- Greedy Algorithm

Question 4

- If a Min-Heap contains n elements
 - Extract-Min takes $O(\log n)$ time
 - Insert takes $O(\log n)$ time
- Design potential function so that:
 - Extract-Min : $O(1)$ amortized time
 - Insert : $O(\log n)$ amortized time

Question 4

- Extract-Min **deletes** some leaf node
- Each node should store some potential to prepare for its future deletion
- Potential function can be defined as the **sum of the potentials** in each node
- **Question:**
What potential should we store in a node?
[There are also other ways to assign the potential]

Question 5

- A sorted array supports fast searching, but slow insertion
- Can we trade searching time for insertion time ?
- Our Scheme:
Partition n elements based on its binary representation of n

Question 5

- Let $k = \lceil \log(n+1) \rceil$, and
 $\langle b_{k-1}, b_{k-2}, \dots, b_2, b_1, b_0 \rangle$
be binary representation of n
- Partition n elements to k sorted arrays such that:
 - if $b_j = 1$, array A_j holds 2^j elements
 - if $b_j = 0$, array A_j is empty

Question 5

For example,

- when $n = 5$, we have $5_{(\text{dec})} = 101_{(\text{bin})}$
→ two non-empty arrays, one with 4 elements, one with 1 element
- when $n = 11$, we have $11_{(\text{dec})} = 1011_{(\text{bin})}$
→ three non-empty arrays, with 8, 2, 1 elements, respectively

Question 5

- Searching time: $O(k \log n) = O(\log^2 n)$
- Insertion time:
 - Have to change the partitioning & to make sure each array is sorted
 - How to do so with amortized insertion time = $O(\log n)$?
- Aggregate Method should be the easiest among the three methods

Question 6 (Bonus)

- An extension to Question 2
- We show a method to generate losing combinations:

```
Set  $L_0 = (0,0)$ 
for  $k = 1, 2, \dots$  {
    Set  $v = \text{smallest unseen positive \#}$  ;
    Set  $L_k = (v, v+k)$  ;
}
```

Question 6 (Bonus)

```
L0 = (0,0)  
for k = 1,2, ... {  
    v = smallest unseen  
    positive # ;  
    Lk = (v, v+k) ;  
}
```


Interesting but unrelated fact:
This function generates each
positive # **exactly once**

Sample Run:

L₀ = (0,0)
L₁ = (1,2)
L₂ = (3,5)
L₃ = (4,7)
L₄ = (6,10)
L₅ = (8,13)

...

Question 6 (Bonus)

- Part (a) and (b):
 - properties about losing combinations
- Part (c):
 - Only losing combinations are generated
- Part (d):
 - a losing combination containing x must be generated (in $O(x)$ steps)
- Part (e) and (f): running time = $O(n)$