CS4311

Design and Analysis of
Algorithms

Tutorial: An Introduction to
Approximation Algorithms

About this Tutorial

Decision vs Optimization

NP-Hard Problems

Dealing with NP-Hard Problems

+ Exact Algorithm

* Randomized Algorithm

» Approximation Algorithm (today's focus)

Decision vs Optimization

- Last time, we have talked about decision

problems, in which the answer is either
YES or NO

E.g., Peter gives us amap G = (V,E), and
he asks us if there is a path from A
to B whose length is at most 100

Decision vs Optimization

* A more natural type of problem is called
optimization problems, in which we want to
obtain a best solution

E.g., Peter gives us amap G = (V,E), and
he asks what is the length of the
shortest path from A to B

» Usually, the answer to an optimization
problem is a number

Decision vs Optimization

+ Two major types of optimization problems:

minimization or maximization

* Previous example is a minimization
problem

* An example for a maximization problem:

* Peter givesusamap G = (V,E), and he
asks what is the maximum number of
edge-disjoint paths from A o B

Decision vs Optimization

» Decision problem and optimization problem
are closely related :

(1) Peter givesusamap G = (V,E), and he
asks what is the length of the
shortest path from A to B

(2) Peter gives us a map G = (V,E), and he
asks us if there is a path from A to B
with length at most k

Decision vs Optimization

- We see that if Problem (1) can be solved,

we can immediately solve Problem (2)

* Ingeneral, if the optimization version can
be solved, the corresponding decision
version can be solved |

- What if its decision version is known
to be NP-complete ??

Decision vs Optimization

* For example, the following is a famous
optimization problem called Max-Clique :

Given an input graph G, what is
the size of the largest clique in 6 ?

» Its decision version, Clique, is NP-complefte:

Given an input graph G, is there
a clique of size at least k ?

NP-Hard

» If the decision version is NP-complete,
then it is unlikely that the optimization
problem has a polynomial-time algorithm

» We call such optimization problem an
NP-hard problem

* So, perhaps no polynomial-time algorithm
may exist... Should we give up solving the
NP-hard problems?

Dealing with NP-Hard problems

» Although a problem is NP-hard, it does not
mean that it cannot be solved

+ At least, we can try naive brute force
search, only that it needs exponential time

*+ Other common strategies :
+ Exact Algorithm

* Randomized Algorithm

+ Approximation Algorithm

10

Exact Algorithm

» Given a graph G with n vertices,

* a brute force approach to solve the
Max-Clique problem is to select every
subset of G, and test if it is a clique

» Running time: O(2"n?) time
» Though time is exponential, it works well
when n is small, and we can improve it ...

» Tarjan & Trojanowski [1977]: O(1.26") time

11

Randomized Algorithm

Use randomization to help

* Idea 1: Design an algorithm that answers
correctly most of the time (but
sometimes may give wrong answer), and it
always run in polynomial time

*+ Idea 2: Design an algorithm that always
give a correct answer, runs mostly
1q polynomial-’rime (but sometimes runs
in exponential time)

12

Approximation Algorithm

Target: runs in polynomial time

* Give-ups: may not find optimal solution ...

- Yet, we want to show that the solution
we find is "close” to optimal

E.g., in a maximization problem, we may
have an algorithm that always returns
a solution at least half the optimal

How can we do that ??
(when we don't even know what optimal is ??)

13

Example : Min Vertex Cover

» Given a graph G = (V,E), we want to select
the minimum # of vertices such that each
edge has at least one vertex selected

* Real-life example:

* edge: road

- vertex: road junction
- selected vertex: guard

» This problem is NP-hard

14

Example : Min Vertex Cover

* Let us consider the following algorithm:
1. C=anempty set
2. while (there is edge in G) {

Pick an edge, say (u,v) :

Put uand v into C ;

Remove u, v, and all edges adjacent
fouorv,;

}

3. return C

15

Example Run

original 6

—@
L
@—@®

Example Run

Picking (a,b)

O—o

C={a,b}

17

Example Run

Picking (c,9)
®

o
e—o

C={a,b,c,g}

18

Example Run

Picking (d.f)

J

C={a,b,c,9,df}

®

19

Example Run

Picking (h,i)

®

C={a,b,c,g,d,f, h,i}

20

Example : Min Vertex Cover

* What is so special about C ?

Vertices in C must cover all edges
But ... it may not be the smallest one
* How far is it from the optimal ?

+ At most 2 times (why??)

Because each edge can only be covered
by its endpoints = in each iteration,
one of the selected vertex must be in
the optimal vertex cover

21

Example : Min Vertex Cover

* Another algorithm, perhaps a more natural
one, is to select the vertex that covers
most edges in each iteration

- After the selection, we remove the
vertex, and all its adjacent edges

C={c}

® @‘0
- @ o €

22

Unfortunately, when the input graph has
n vertices, this new algorithm can only
guarantee a cover at most O(log n) times
the opTimaI (instead of at most 2 times before)

A worst-case scenario looks like :
Optimal : 6 nodes (red) New algo : 13 nodes (blue)

(3]
join 1-6 ‘6"'.‘.:;‘

\VISPTIS
Q0 aSE
bl 0O O 0000000 00

join1-5 join 1-4

23

Example : Max-Cut

» Given a graph G = (V,E), we want to
partition V into disjoint sets (V,,V,) such
that #edges in-between them (L., with
exactly one end-point in each set) iS maximized

* (Vy,V,) is usually called a cut
* target: find a cut with maximum #edges

» This problem is NP-hard

24

Example : Max-Cut

Fact: If the graph has m edges, the
maximum #edges in any cut is m

- Thus, if we can find a cut which has at

least m/2 edges, this will be at least half
of the optimal

- How to find this cut ?

25

* Let us consider the following algorithm:

1. V, =V, = empty set ;

2. Label the vertices by x;, x,, ..., X,

3. For (k=1%o n){
/* Fix location of x, */
Fix x, to the set such that more
in-between edges (with those already fixed
vertices x;, X,, .., X,.1) are obtained ;

}
4. return the cut (V,,V,) ;

26

Example Run

original 6 Fix vertex a

B—a @
SRS
@—@®

27

Example Run

original G Fix vertex b

@v @‘0 O—®
@“"! R
@—@®

28

Example Run

original 6 Fix vertex c

@\:\g

vertex c can be
added to either side

29

Example Run

original G Fix vertex d

30

B— @ @

Example Run

original G Fix vertex e

31

Example Run

original G Fix vertex f

32

Example Run

original 6 Fix vertex g

33

Example Run

original 6 Fix vertex h

34

Example Run

original G Fix vertex i

#in-between edges = 9

35

Example : Max-Cut

* How far is our cut from the optimal ?

+ At most 2 times (why??)

- When a vertex v is fixed, we will add
some edges into the cut, and discard
some edges (u,v) if u is placed in the
same set as v

* But when each vertex is fixed :
#edges added > #edges discarded

= total #edges added > m/2

36

