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CS4311
Design and Analysis of

Algorithms

Tutorial: An Introduction to
Approximation Algorithms
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About this Tutorial
• Decision vs Optimization
• NP-Hard Problems
• Dealing with NP-Hard Problems

•Exact Algorithm
•Randomized Algorithm
•Approximation Algorithm (today’s focus)



3

Decision vs Optimization
•Last time, we have talked about decision

problems, in which the answer is either
YES or NO

E.g., Peter gives us a map G = (V,E), and
he asks us if there is a path from A
to B whose length is at most 100
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Decision vs Optimization
•A more natural type of problem is called

optimization problems, in which we want to
obtain a best solution

E.g., Peter gives us a map G = (V,E), and
he asks what is the length of the
shortest path from A to B

•Usually, the answer to an optimization
problem is a number
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Decision vs Optimization
•Two major types of optimization problems:

minimization or maximization
•Previous example is a minimization

problem

•An example for a maximization problem:
•Peter gives us a map G = (V,E), and he

asks what is the maximum number of
edge-disjoint paths from A to B
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Decision vs Optimization
•Decision problem and optimization problem

are closely related :

(1) Peter gives us a map G = (V,E), and he
asks what is the length of the
shortest path from A to B

(2) Peter gives us a map G = (V,E), and he
asks us if there is a path from A to B
with length at most k
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Decision vs Optimization

•We see that if Problem (1) can be solved,
we can immediately solve Problem (2)

•In general, if the optimization version can
be solved, the corresponding decision
version can be solved !
•What if its decision version is known

to be NP-complete ??
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Decision vs Optimization
•For example, the following is a famous

optimization problem called Max-Clique :

Given an input graph G, what is
the size of the largest clique in G ?

•Its decision version, Clique, is NP-complete:

Given an input graph G, is there
a clique of size at least k ?
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NP-Hard
•If the decision version is NP-complete,

then it is unlikely that the optimization
problem has a polynomial-time algorithm
•We call such optimization problem an

NP-hard problem

•So, perhaps no polynomial-time algorithm
may exist…Should we give up solving the
NP-hard problems?
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Dealing with NP-Hard problems
•Although a problem is NP-hard, it does not

mean that it cannot be solved
•At least, we can try naïve brute force

search, only that it needs exponential time
•Other common strategies :

•Exact Algorithm
•Randomized Algorithm
•Approximation Algorithm
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Exact Algorithm
•Given a graph G with n vertices,

•a brute force approach to solve the
Max-Clique problem is to select every
subset of G, and test if it is a clique

•Running time: O(2n n2) time
•Though time is exponential, it works well

when n is small, and we can improve it …
•Tarjan & Trojanowski [1977]: O(1.26n) time
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Randomized Algorithm
•Use randomization to help
•Idea 1: Design an algorithm that answers

correctly most of the time (but
sometimes may give wrong answer), and it
always run in polynomial time

•Idea 2: Design an algorithm that always
give a correct answer, runs mostly
in polynomial-time (but sometimes runs
in exponential time)
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Approximation Algorithm
•Target: runs in polynomial time
•Give-ups: may not find optimal solution …

•Yet, we want to show that the solution
we find is “close”to optimal

•E.g., in a maximization problem, we may
have an algorithm that always returns
a solution at least half the optimal

•How can we do that ??
• (when we don’t even know what optimal is ??)
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Example : Min Vertex Cover
•Given a graph G = (V,E), we want to select

the minimum # of vertices such that each
edge has at least one vertex selected

•Real-life example:
•edge: road
•vertex : road junction
•selected vertex: guard

•This problem is NP-hard
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Example : Min Vertex Cover
•Let us consider the following algorithm:

1. C = an empty set
2. while (there is edge in G) {

Pick an edge, say (u,v) ;
Put u and v into C ;
Remove u, v, and all edges adjacent
to u or v ;

}
3. return C
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Example Run
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Example Run
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Example Run
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Example Run
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Picking (d,f)

C = { a, b, c, g, d, f }
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Example Run

e

Picking (h,i)

C = { a, b, c, g, d, f, h, i }



21

Example : Min Vertex Cover
•What is so special about C ?

• Vertices in C must cover all edges !!
• But …it may not be the smallest one

•How far is it from the optimal ?
•At most 2 times (why??)
•Because each edge can only be covered

by its endpoints  in each iteration,
one of the selected vertex must be in
the optimal vertex cover
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Example : Min Vertex Cover
•Another algorithm, perhaps a more natural

one, is to select the vertex that covers
most edges in each iteration
•After the selection, we remove the

vertex, and all its adjacent edges
•E.g.,
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•Unfortunately, when the input graph has
n vertices, this new algorithm can only
guarantee a cover at most O(log n) times
the optimal (instead of at most 2 times before)

•A worst-case scenario looks like :
Optimal : 6 nodes (red) New algo : 13 nodes (blue)

1 2 3 4 5 6
join 1-6

join 1-5 join 1-4
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Example : Max-Cut
•Given a graph G = (V,E), we want to

partition V into disjoint sets (V1,V2) such
that #edges in-between them (I.e., with
exactly one end-point in each set) is maximized
• (V1,V2) is usually called a cut
•target: find a cut with maximum #edges

•This problem is NP-hard
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Example : Max-Cut
Fact: If the graph has m edges, the

maximum #edges in any cut is m

•Thus, if we can find a cut which has at
least m/2 edges, this will be at least half
of the optimal

•How to find this cut ?
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•Let us consider the following algorithm:
1. V1 = V2 = empty set ;
2. Label the vertices by x1, x2, …, xn

3. For (k = 1 to n) {
/* Fix location of xk */

Fix xk to the set such that more
in-between edges (with those already fixed

vertices x1, x2, …, xk-1) are obtained ;
}

4. return the cut (V1,V2) ;
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Example Run
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Example Run
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Example Run
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Example Run
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Example Run
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Example Run
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Example Run
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Example Run
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Example Run
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Example : Max-Cut
•How far is our cut from the optimal ?

•At most 2 times (why??)
•When a vertex v is fixed, we will add

some edges into the cut, and discard
some edges (u,v) if u is placed in the
same set as v

•But when each vertex is fixed :
#edges added #edges discarded
 total #edges added m/2


