CS4311
Design and Analysis of Algorithms

General Info, Scope, Textbook Assessment, …
General Information

- Web page:
 - www.cs.nthu.edu.tw/~wkhon/algo08.html
- Lecturer:
 - Wing-Kai Hon (韓永楷)
- TAs:
 - Mark (簡裕峰) Bite (邱聖元)
 - Foga (劉富翃) Jenny (劉向瑄)
- Meeting Times
 - Tue: 10:10—12:00 Thur: 11:10—12:00
 - Extra tutorial hours
- Our contact info & consultation hours will be posted in the course web page soon ^_^
This course is about Algorithm...

So, what is an algorithm?

• We face many problems every day
 - Transform an input into a desired output

• Example: Given a list of 10 numbers, sorted in increasing order. Determine if the number “5” is in the list
 - what is the input? what is the output?

• Algorithm: A method of solving a particular problem, using a sequence of well-defined steps
Algorithms for our Example

• Algorithm 1: (Linear Scan)
 - Look at every number in the list

• Algorithm 2: (Binary Search)
 - If the list has 1 element, answer directly
 - Else, compare the middle number in the list
 • Case 1: If equals to “5”, answer “YES”
 • Case 2: If bigger than “5”, search left half using Algorithm 2 (but the list is now shorter)
 • Case 3: If smaller than “5”, search right half using Algorithm 2 (but the list is now shorter)
Both algorithms can be extended to solve a more general problem, for any sorted list of any length, and for any target number.

Question: When the length of the list is VERY long, say, 100000, which algorithm will you prefer? Why?
What will we study in the course?

- Look at some classical algorithms on different kinds of problems
- How to design an algorithm
- How to show that an algorithm works correctly
- How to analyze the performance of an algorithm
Teaching Plan

- **Part I: Basics (~1.5 wks)**
 - Growth of Function
 - Solving Recurrence
 ➔ important in the analysis part
- **Part II: Sorting & Median (~1.5 wks)**
- **Part III: Basic Data Structures (3 wks)**
 - Hash Table, Red-Black Tree, ...
 ➔ During tutorial, time and place to be fixed
Teaching Plan

• Part IV: More Design & Analysis (~3 wks)
• Part V: More Data Structures (~3 wks)
• Part VI: Graph Algorithms (~5 wks)
 - Minimum Spanning Tree
 - Shortest Path, Maximum Flow
• Part VII: Selected Topics (~2.5 wks)
 - String Matching, RSA
 - NP-completeness, Approx Algorithm
Textbook & References

• Textbook:
 - Introduction to Algorithms, by Cormen et al.
 - Most materials are from this book
 - There is also a great set of lecture notes by Prof. BF Wang ➔ will be in our web page for download

• References
 - Introduction to Design and Analysis of Algorithms, by Lee et al.
 - Algorithms in C++, by Sedgewick
 - The Art of Computer Programming, by Knuth
Assessments

5-7 Assignments:

Best four (total) = 37%

5th best = 3%

2 Midterms = 20%

Final Exam = 40%

--

Total 100%
Study Tips

• Have a fresh mind in lectures & tutorials (sleep well, don’t eat too much before coming :-))
• Don’t be shy, ask questions
• Try your best to do every assignment
 (Can work in groups and exchange high-level ideas, but must do it yourself separately in the end)
• Study textbook, and try the exercises
• Most importantly: Have fun!