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CS4311
Design and Analysis of

Algorithms

Lecture 8: Order Statistics
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•Finding max, min in an unsorted array
(upper bound and lower bound)

•Selecting the kth smallest element in an
unsorted array

About this lecture

kth smallest element kth order statistics
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Finding Maximum (Method I)
•Let S denote the input set of n items
•To find the maximum of S, we can:

Step 1: Set max = item 1
Step 2: for k = 2, 3, …, n

if (item k is larger than max)
Update max = item k;

Step 3: return max;

# comparisons = n –1
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Finding Maximum (Method II)
•Define a function Find-Max as follows:
Find-Max(R, k) /* R is a set with k items */

1. if (k 2) return maximum of R;
2. Partition items of R into bk/2c pairs;
3. Delete smaller item from R in each pair;
4. return Find-Max(R, k - bk/2c);

Calling Find-Max(S,n) gives the maximum of S
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Finding Maximum (Method II)
Let T(n) = # comparisons for Find-Max with

problem size n

So, T(n) = T(n -bn/2c) + bn/2c for n ¸ 3

T(2) = 1

Solving the recurrence (by substitution),

we get T(n) = n - 1
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Lower Bound
Question: Can we find the maximum using

fewer than n –1 comparisons?

Answer: No ! To ensure that an item x is
not the maximum, there must be at least
one comparison in which x is the smaller
of the compared items
So, we need to ensure n-1 items not max
 at least n –1 comparisons are needed
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Finding Both Max and Min
Can we find both max and min quickly?

Solution 1:
First, find max with n –1 comparisons
Then, find min with n –1 comparisons
 Total = 2n –2 comparisons

Is there a better solution ??
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Finding Both Max and Min
Solution 2: (if n is even)

First, partition items into n/2 pairs;

…

Next, compare items within each pair;

…

= larger = smaller
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Finding Both Max and Min
Then, max = Find-Max in larger items

min = Find-Min in smaller items

…

…

Find-Max Find-Min

# comparisons = 3n/2 –2
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Finding Both Max and Min
Solution 2: (if n is odd)

We find max and min of first n - 1 items;
if (last item is larger than max)

Update max = last item;
if (last item is smaller than min )

Update min = last item;

# comparisons = 3(n-1)/2
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Finding Both Max and Min
Conclusion:
To find both max and min:

if n is odd: 3(n-1)/2 comparisons
if n is even: 3n/2 –2 comparisons

Combining: at most 3bn/2c comparisons

 better than finding max and min separately



12

Lower Bound
Textbook Ex 9.1-2 (Very challenging):
•Show that we need at least

d3n/2e–2 comparisons

to find both max and min in worst-case

Hint: Consider how many numbers may be
max or min (or both). Investigate how a
comparison affects these counts



13

Selection in Linear Time
•In next slides, we describe a recursive call

Select(S,k)
which supports finding the kth smallest
element in S

•Recursion is used for two purposes:
(1) selecting a good pivot (as in Quicksort)
(2) solving a smaller sub-problem
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Select(S, k)

/* First,find a good pivot */
1. Partition S into d|S|/5e groups, each

group has five items (one group may
have fewer items);

2. Sort each group separately;
3. Collect median of each group into S’;

4. Find median m of S’:
m = Select(S’,dd|S|/5e/2e);
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4. Let q = # items of S smaller than m;
5. If (k == q + 1)

return m;
/* Partition with pivot */
6. Else partition S into X and Y

X = {items smaller than m}
Y = {items larger than m}

/* Next,form a sub-problem */
7. If (k q + 1)

return Select(X, k)
8. Else

return Select(Y, k–(q+1));
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Selection in Linear Time
Questions:

1. Why is the previous algorithm correct?
(Prove by Induction)

2. What is its running time?
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Running Time
•In our selection algorithm, we chose m,

which is the median of medians, to be a
pivot and partition S into two sets X and Y

•In fact, if we choose any other item as the
pivot, the algorithm is still correct

•Why don’t we just pick an arbitrary pivot
so that we can save some time ??
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Running Time
•A closer look reviews that the worst-case

running time depends on |X| and |Y|

•Precisely, if T(|S|) denote the worst-case
running time of the algorithm on S, then

T(|S|) = T(d|S|/5e) + (|S|)

+ max {T(|X|),T(|Y|) }
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Running Time
•Later, we show that if we choose m, the

“median of medians”, as the pivot,

both |X| and |Y| will be at most 3|S|/4

•Consequently,

T(n) = T(dn/5e) + (n) + T(3n/4)

 T(n) = (n) (obtained by substitution)
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Median of Medians
•Let’s begin with dn/5e sorted groups, each

has 5 items (one group may have fewer)

…

= larger = smaller= median
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Median of Medians
•Then, we obtain the median of medians, m

= mGroups with median
smaller than m

Groups with median
larger than m
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Median of Medians
Then, we know that all items marked with

X have value at most m

= mGroups with median
smaller than m

X X
X

X X
X

X X
X

X X
X

X = “value m”
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Median of Medians
The number of items with value at most m
is at least

3(ddn/5e/2e–1) - 2

each full group has
3 ‘crossed’items

min # of
groups

one group may have
only 1 ‘crossed’item

 number of items: at least 3n/10 –5
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Median of Medians
Previous page implies that at most

7n/10 + 5 items
are greater than m

 For large enough n (say, n 100)
7n/10 + 5 3n/4

|Y| is at most 3n/4 for large enough n
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Median of Medians

Similarly, we can show that at most
7n/10 + 5 items are smaller than m

 |X| is at most 3n/4 for large enough n

Conclusion:
The “median of medians”helps us control
the worst-case size of the sub-problem
 without it, the algorithm runs in (n2)

time in the worst-case


