
1

CS4311
Design and Analysis of

Algorithms

Lecture 8: Order Statistics

2

•Finding max, min in an unsorted array
(upper bound and lower bound)

•Selecting the kth smallest element in an
unsorted array

About this lecture

kth smallest element kth order statistics

3

Finding Maximum (Method I)
•Let S denote the input set of n items
•To find the maximum of S, we can:

Step 1: Set max = item 1
Step 2: for k = 2, 3, …, n

if (item k is larger than max)
Update max = item k;

Step 3: return max;

comparisons = n –1

4

Finding Maximum (Method II)
•Define a function Find-Max as follows:
Find-Max(R, k) /* R is a set with k items */

1. if (k 2) return maximum of R;
2. Partition items of R into bk/2c pairs;
3. Delete smaller item from R in each pair;
4. return Find-Max(R, k - bk/2c);

Calling Find-Max(S,n) gives the maximum of S

5

Finding Maximum (Method II)
Let T(n) = # comparisons for Find-Max with

problem size n

So, T(n) = T(n -bn/2c) + bn/2c for n ¸ 3

T(2) = 1

Solving the recurrence (by substitution),

we get T(n) = n - 1

6

Lower Bound
Question: Can we find the maximum using

fewer than n –1 comparisons?

Answer: No ! To ensure that an item x is
not the maximum, there must be at least
one comparison in which x is the smaller
of the compared items
So, we need to ensure n-1 items not max
 at least n –1 comparisons are needed

7

Finding Both Max and Min
Can we find both max and min quickly?

Solution 1:
First, find max with n –1 comparisons
Then, find min with n –1 comparisons
 Total = 2n –2 comparisons

Is there a better solution ??

8

Finding Both Max and Min
Solution 2: (if n is even)

First, partition items into n/2 pairs;

…

Next, compare items within each pair;

…

= larger = smaller

9

Finding Both Max and Min
Then, max = Find-Max in larger items

min = Find-Min in smaller items

…

…

Find-Max Find-Min

comparisons = 3n/2 –2

10

Finding Both Max and Min
Solution 2: (if n is odd)

We find max and min of first n - 1 items;
if (last item is larger than max)

Update max = last item;
if (last item is smaller than min)

Update min = last item;

comparisons = 3(n-1)/2

11

Finding Both Max and Min
Conclusion:
To find both max and min:

if n is odd: 3(n-1)/2 comparisons
if n is even: 3n/2 –2 comparisons

Combining: at most 3bn/2c comparisons

 better than finding max and min separately

12

Lower Bound
Textbook Ex 9.1-2 (Very challenging):
•Show that we need at least

d3n/2e–2 comparisons

to find both max and min in worst-case

Hint: Consider how many numbers may be
max or min (or both). Investigate how a
comparison affects these counts

13

Selection in Linear Time
•In next slides, we describe a recursive call

Select(S,k)
which supports finding the kth smallest
element in S

•Recursion is used for two purposes:
(1) selecting a good pivot (as in Quicksort)
(2) solving a smaller sub-problem

14

Select(S, k)

/* First,find a good pivot */
1. Partition S into d|S|/5e groups, each

group has five items (one group may
have fewer items);

2. Sort each group separately;
3. Collect median of each group into S’;

4. Find median m of S’:
m = Select(S’,dd|S|/5e/2e);

15

4. Let q = # items of S smaller than m;
5. If (k == q + 1)

return m;
/* Partition with pivot */
6. Else partition S into X and Y

X = {items smaller than m}
Y = {items larger than m}

/* Next,form a sub-problem */
7. If (k q + 1)

return Select(X, k)
8. Else

return Select(Y, k–(q+1));

16

Selection in Linear Time
Questions:

1. Why is the previous algorithm correct?
(Prove by Induction)

2. What is its running time?

17

Running Time
•In our selection algorithm, we chose m,

which is the median of medians, to be a
pivot and partition S into two sets X and Y

•In fact, if we choose any other item as the
pivot, the algorithm is still correct

•Why don’t we just pick an arbitrary pivot
so that we can save some time ??

18

Running Time
•A closer look reviews that the worst-case

running time depends on |X| and |Y|

•Precisely, if T(|S|) denote the worst-case
running time of the algorithm on S, then

T(|S|) = T(d|S|/5e) + (|S|)

+ max {T(|X|),T(|Y|) }

19

Running Time
•Later, we show that if we choose m, the

“median of medians”, as the pivot,

both |X| and |Y| will be at most 3|S|/4

•Consequently,

T(n) = T(dn/5e) + (n) + T(3n/4)

 T(n) = (n) (obtained by substitution)

20

Median of Medians
•Let’s begin with dn/5e sorted groups, each

has 5 items (one group may have fewer)

…

= larger = smaller= median

21

Median of Medians
•Then, we obtain the median of medians, m

= mGroups with median
smaller than m

Groups with median
larger than m

22

Median of Medians
Then, we know that all items marked with

X have value at most m

= mGroups with median
smaller than m

X X
X

X X
X

X X
X

X X
X

X = “value m”

23

Median of Medians
The number of items with value at most m
is at least

3(ddn/5e/2e–1) - 2

each full group has
3 ‘crossed’items

min # of
groups

one group may have
only 1 ‘crossed’item

 number of items: at least 3n/10 –5

24

Median of Medians
Previous page implies that at most

7n/10 + 5 items
are greater than m

 For large enough n (say, n 100)
7n/10 + 5 3n/4

|Y| is at most 3n/4 for large enough n

25

Median of Medians

Similarly, we can show that at most
7n/10 + 5 items are smaller than m

 |X| is at most 3n/4 for large enough n

Conclusion:
The “median of medians”helps us control
the worst-case size of the sub-problem
 without it, the algorithm runs in (n2)

time in the worst-case

