About this lecture

• Sorting algorithms we studied so far
 - Insertion, Selection, Merge, Quicksort
 ➔ determine sorted order by comparison

• We will look at 3 new sorting algorithms
 - Counting Sort, Radix Sort, Bucket Sort
 ➔ assume some properties on the input, and
determine the sorted order by distribution
Helping the Billionaire

- Your boss, Bill, is a billionaire
- Inside his BIG wallet, there are a lot of bills, say, n bills
- Nine kinds of bills:
 - $1, $5, $10, $20, $50, $100, $200, $500, $1000
Helping the Billionaire

• He did not care about the ordering of the bills before
• But then, he has taken the Algorithm course, and learnt that if things are sorted, we can search faster

The horoscope says I should use only $500 notes today ... Do I have enough in the wallet?
A Proposal

• Create a bin for each kind of bill
• Look at his bill one by one, and place the bill in the corresponding bin
• Finally, collect bills in each bin, starting from $1-bin, $5-bin, ..., to $1000-bin
A Proposal

• In the previous algorithm, there is no comparison between the items …
 • But we can still sort correctly… WHY?

• Each step looks at the value of an item, and distribute the item to the correct bin
 • So, in the end, when a bill is collected, its value must be larger than or equal to all bills collected before ➔ sorted
Sorting by Distribution

• Previous algorithm sorts the bills based on distribution operations

• It works because:
 • we have information about the values of the input items ➔ we can create bins

• We will look at more algorithms which are based on the same distribution idea
Counting Sort
Counting Sort

• Input: Array $A[1..n]$ of n integers, each has value from $[0,k]$

• Output: Sorted array of the n integers

• Idea 1: Create $B[1..n]$ to store the output

• Idea 2: Process $A[1..n]$ from right to left
 • Use $k + 2$ counters:
 • One for “which element to process”
 • $k + 1$ for “where to place”
Counting Sort (Details)

Before Running

A

2 1 2 5 3 3 1 2

k+1 counters

c[0], c[1], c[2], c[3], c[4], c[5]

next element

B

Counting Sort (Details)

Step 1: Set $c[j] = \text{location in } B \text{ for placing the next element if it has value } j$
Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

A

\[2 \ 1 \ 2 \ 5 \ 3 \ 3 \ 1 \ 2\]

B

\[\text{next element} \quad 2\]

Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

A

\[
\begin{array}{cccccccc}
2 & 1 & 2 & 5 & 3 & 3 & 1 & 2 \\
\end{array}
\]

next element

B

\[
\begin{array}{cccc}
1 & 2 \\
\end{array}
\]

c[0] = 0 c[1] = 1

\[
\begin{array}{cccc}
& & & \\
\end{array}
\]

\[
\begin{array}{cccc}
& & & \\
\end{array}
\]

Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

A

2 1 2 5 3 3 1 2

next element

B

1 2 3

c[2] = 4

c[5] = 8

c[0] = 0

c[1] = 1

c[3] = 6

c[4] = 8
Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

A

\[
\begin{array}{cccccccc}
2 & 1 & 2 & 5 & 3 & 3 & 1 & 2 \\
\end{array}
\]

next element

c[2] = 4
c[5] = 8

c[0] = 0
c[1] = 1
c[3] = 5
c[4] = 8

B
Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

A

| 2 | 1 | 2 | 5 | 3 | 3 | 1 | 2 |

next element

B

| 1 | 2 | 3 | 3 | 5 |

Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

A

2 1 2 5 3 3 1 2

next element

c[2] = 3
c[5] = 7

B

1 2 2 3 3 5

c[0] = 0
c[1] = 1
c[3] = 5
c[4] = 8
Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter.

A

2 1 2 5 3 3 1 2

next element

B
Counting Sort (Details)

Step 2: Done when all elements of A are processed

A

next element

2 1 2 5 3 3 1 2

c[2] = 3

c[5] = 7

B

1 1 2 2 2 3 3 5

c[0] = 0
c[3] = 5
c[4] = 8

c[1] = 0
Counting Sort (Step 1)

How can we perform Step 1 smartly?

1. Initialize \(c[0], c[1], \ldots, c[k] \) to 0

2. /* First, set \(c[j] \) = # elements with value \(j \) */

 For \(x = 1, 2, \ldots, n \), increase \(c[A[x]] \) by 1

3. /* Set \(c[j] \) = location in \(B \) to place next element whose value is \(j \) (iteratively) */

 For \(y = 1, 2, \ldots, k \), \(c[y] = c[y-1] + c[y] \)

 Time for Step 1 = \(O(n + k) \)
Counting Sort (Step 2)

How can we perform Step 2?

/* Process A from right to left */
For x = n, n-1, ..., 2, 1

{ /* Process next element */
 B[c[A[x]]] = A[x];
 /* Update counter */
 Decrease c[A[x]] by 1;
}

Time for Step 2 = $O(n)$
Counting Sort (Running Time)

Conclusion:

• **Running time = \(O(n + k) \)**

 \(\Rightarrow \) if \(k = O(n) \), time is (asymptotically) optimal

• **Counting sort is also stable:**

 • elements with same value appear in **same order** in before and after sorting
Stable Sort

Before Sorting

After Sorting
Radix Sort
Radix Sort

• Input: Array $A[1..n]$ of n integers, each has d digits, and each digit has value from $[0,k]$

• Output: Sorted array of the n integers

• Idea: Sort in d rounds
 • At Round j, stable sort A on digit j (where rightmost digit = digit 1)

extra info on values
Radix Sort (Example Run)

Before Running

1 9 0 4
2 5 7 9
1 8 7 4
6 3 5 5
4 4 3 2
8 3 1 8
1 3 0 4

4 digits
Radix Sort (Example Run)

Round 1: Stable sort digit 1

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>
Radix Sort (Example Run)

Round 2: Stable sort digit 2

4 4 3 2 1 9 0 4
1 9 0 4 1 3 0 4
1 8 7 4 8 3 1 8
1 3 0 4 4 4 3 2
6 3 5 5 6 3 5 5
8 3 1 8 1 8 7 4
2 5 7 9 2 5 7 9

After Round 2, last 2 digits are sorted (why?)
Radix Sort (Example Run)

Round 3: Stable sort digit 3

1904 1304 8318 4432 6355 1874 2579
1304 8318 6355 4432 2579 1874 1904

After Round 3, last 3 digits are sorted (why?)
Radix Sort (Example Run)

Round 4: Stable sort digit 4

1 3 0 4
8 3 1 8
6 3 5 5
4 4 3 2
2 5 7 9
1 8 7 4
1 9 0 4

After Round 4, last 4 digits are sorted (why?)
Radix Sort (Example Run)

Done when all digits are processed

1304
1874
1904
2579
4432
6355
8318

The array is sorted (why?)
Radix Sort (Correctness)

Question:
“After r rounds, last r digits are sorted”
Why ??

Answer:
This can be proved by induction:
The statement is true for $r = 1$
Assume the statement is true for $r = k$
Then ...
Radix Sort (Correctness)

At Round $k+1$,

- if two numbers differ in digit “$k+1$”, their relative order [based on last $k+1$ digits] will be correct after sorting digit “$k+1$”
- if two numbers match in digit “$k+1$”, their relative order [based on last $k+1$ digits] will be correct after stable sorting digit “$k+1$” (why?)

→ Last “$k+1$” digits sorted after Round “$k+1$”
Radix Sort (Summary)

Conclusion:

- After d rounds, last d digits are sorted, so that the numbers in $A[1..n]$ are sorted.
- There are d rounds of stable sort, each can be done in $O(n + k)$ time.
- Running time = $O(d(n + k))$.
- If $d=O(1)$ and $k=O(n)$, asymptotically optimal.
Bucket Sort
Bucket Sort

• Input: Array $A[1..n]$ of n elements, each is drawn uniformly at random from the interval $[0,1)$

• Output: Sorted array of the n elements

• Idea:
 Distribute elements into n buckets, so that each bucket is likely to have fewer elements \Rightarrow easier to sort
Bucket Sort (Details)

Before Running

0.78, 0.17, 0.39, 0.26, 0.72,
0.94, 0.21, 0.12, 0.23, 0.68

Step 1: Create n buckets

n = #buckets = #elements

[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5)

[0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1)

each bucket represents a subinterval of size 1/n
Bucket Sort (Details)

Step 2: Distribute each element to correct bucket

If Bucket j represents subinterval $[j/n, (j+1)/n]$, element with value x should be in Bucket $[xn]$
Bucket Sort (Details)

Step 3: Sort each bucket (by insertion sort)

- [0,0.1): 0.12, 0.17
- [0.1,0.2): 0.21, 0.23, 0.26
- [0.2,0.3): 0.39
- [0.3,0.4): 0.68
- [0.4,0.5): 0.72, 0.78
- [0.5,0.6): 0.94
- [0.6,0.7): 0.78
- [0.7,0.8): 0.78
- [0.8,0.9): 0.78
- [0.9,1): 0.78
Bucket Sort (Details)

Step 4: Collect elements from Bucket 0 to Bucket n-1

Sorted Output: 0.12, 0.17, 0.21, 0.23, 0.26, 0.39, 0.68, 0.72, 0.78, 0.94
Bucket Sort (Running Time)

• Let $X = \#$ comparisons in all insertion sort

Running time $= \Theta(n + X)$

\Rightarrow worst-case running time $= \Theta(n^2)$

• How about average running time?

Finding average of X (i.e. $\#$ comparisons) gives average running time
Average Running Time

Let \(n_j = \# \text{ elements in Bucket } j \)

\[
X \leq c(n_0^2 + n_1^2 + \cdots + n_{n-1}^2)
\]

So,

\[
E[X] \leq E[c(n_0^2 + n_1^2 + \cdots + n_{n-1}^2)]
\]

\[
= cE[n_0^2 + n_1^2 + \cdots + n_{n-1}^2]
\]

\[
= c(E[n_0^2] + E[n_1^2] + \cdots + E[n_{n-1}^2])
\]

\[
= cn E[n_0^2] \quad \text{(by symmetry)}
\]
Average Running Time

Textbook (pages 175-176) shows that

$$E[n_0^2] = 2 - \frac{1}{n}$$

$$\Rightarrow E[X] \leq cn \cdot E[n_0^2] = 2cn - c$$

In other words, $$E[X] = \mathcal{O}(n)$$

$$\Rightarrow \text{Average running time} = \Theta(n)$$
For Interested Classmates

The following is how we can show

\[E[n_0^2] = 2 - \frac{1}{n} \]

Recall that \(n_0 = \# \) elements in Bucket 0

So, suppose we set

\[Y_k = 1 \quad \text{if element } k \text{ is in Bucket 0} \]
\[Y_k = 0 \quad \text{if element } k \text{ not in Bucket 0} \]

Then, \(n_0 = Y_1 + Y_2 + \ldots + Y_n \)
For Interested Classmates

Then,

\[E[n_0^2] = E[(Y_1 + Y_2 + \ldots + Y_n)^2] \]
\[= E[Y_1^2 + Y_2^2 + \ldots + Y_n^2 \]
\[+ Y_1 Y_2 + Y_1 Y_3 + \ldots + Y_1 Y_n \]
\[+ Y_2 Y_1 + Y_2 Y_3 + \ldots + Y_2 Y_n \]
\[+ \ldots \]
\[+ Y_n Y_1 + Y_n Y_2 + \ldots + Y_n Y_{n-1}] \]
\[= E[Y_1^2] + E[Y_2^2] + \ldots + E[Y_n^2] + E[Y_1Y_2] + \ldots + E[Y_nY_{n-1}]\]
\[= n E[Y_1^2] + n(n-1) E[Y_1Y_2]\]
(by symmetry)

The value of \(Y_1^2\) is either 1 (when \(Y_1 = 1\)), or 0 (when \(Y_1 = 0\))

The first case happens with \(1/n\) chance (when element 1 is in Bucket 0), so
\[E[Y_1^2] = \frac{1}{n} * 1 + (1 - \frac{1}{n}) * 0 = \frac{1}{n}\]
For Y_1Y_2, it is either 1 (when $Y_1=1$ and $Y_2=1$), or 0 (otherwise).

The first case happens with $1/n^2$ chance (when both element 1 and element 2 are in Bucket 0), so

\[
E[Y_1Y_2] = \frac{1}{n^2} \times 1 + (1-\frac{1}{n^2}) \times 0 = \frac{1}{n^2}
\]

Thus, \(E[n_0^2] = n \ E[Y_1^2] + n(n-1) \ E[Y_1Y_2]\)

\[
= n \left(\frac{1}{n}\right) + n(n-1) \left(\frac{1}{n^2}\right)
= 2 - \frac{1}{n}
\]