
1

CS4311
Design and Analysis of

Algorithms

Lecture 5: Quicksort

2

•Introduce Quicksort
–Cinderella’s New Problem

•Running time of Quicksort
–Worst-Case
–Average-Case

About this lecture

3

Do you remember
Cinderella’s Problem?

I see…

You have to find
the largest bolt

and the largest nut

4

Cinderella’s New Problem

I see…

You have to sort
the bolts and sort

the nuts

5

Fairy Godmother’s Proposal

1. Pick one of the nut
2. Compare this nut with all

other bolts  Find those
which are larger, and find
those which are smaller

6

Fairy Godmother’s Proposal

Bolts
smaller
than nut

Bolts
larger

than nutBolt equal
to nut

Done !

picked nut

7

picked nut

Fairy Godmother’s Proposal
3. Pick the bolt that is equal

to the selected nut
4. Compare this bolt with all

other nuts  Find those
which are larger, and find
those which are smaller

Bolts
smaller
than nut

Bolts
larger

than nutBolt equal
to nut

8

Fairy Godmother’s Proposal

Nuts smaller
than bolt

Nuts larger
than bolt

Done !

9

Fairy Godmother’s Proposal

5. Sort left part (recursively)
6. Sort right part (recursively)

^^ This is all of my proposal ^^

Nuts smaller
than bolt

Nuts larger
than bolt

10

Fairy Godmother’s Proposal

•Can you see why Fairy Godmother’s
proposal is a correct algorithm?

•What is the running time ?

•Worst-case: (n2) comparisons
•No better than the brute force approach !!

•Though worst-case runs badly, the
average case is good: (n log n) comparisons

11

Quicksort uses Partition
The previous algorithm is exactly Quicksort,

which makes use of a Partition function:

Partition(A,p,r) /* to partition array A[p..r] */
1. Pick an element, say A[t] (called pivot)
2. Let q = #elements less than pivot
3. Put elements less than pivot to A[p..p+q-1]
4. Put pivot to A[p+q]
5. Put remaining elements to A[p+q+1..r]
6. Return q

12

More on Partition
•After Partition(A,p,r), we obtain the value q,

and know that
•Pivot was A[p+q]
•Before A[p+q] : smaller than pivot
•After A[p+q] : larger than pivot

•There are many ways to perform Partition.
One way is shown in the next slides
•It will be an in-place algorithm (using O(1)

extra space in addition to the input array)

13

Ideas for In-Place Partition

•Idea 1: Use A[r] (the last element) as pivot
•Idea 2: Process A[p..r] from left to right

•The prefix (the beginning part) of A stores all
elements less than pivot seen so far

•Use two counters:
•One for the length of the prefix
•One for the element we are looking

14

In-Place Partition in Action

1 3 7 8 2 6 4 5

pivotnext element

Length of prefix = 0

before running

Because next element is less than pivot,
we shall extend the prefix by 1

15

In-Place Partition in Action

1 3 7 8 2 6 4 5

pivotnext element

Length of prefix = 1

after 1 step

Because next element is smaller than pivot, and is
adjacent to the prefix, we extend the prefix

16

In-Place Partition in Action

1 3 7 8 2 6 4 5

pivotnext element

Length of prefix = 2

after 2 steps

Because next element is larger than pivot,
no change to prefix

17

In-Place Partition in Action

1 3 7 8 2 6 4 5

pivotnext element

Length of prefix = 2

after 3 steps

Again, next element is larger than pivot,
no change to prefix

18

In-Place Partition in Action

1 3 7 8 2 6 4 5

pivotnext element

Length of prefix = 2

after 4 steps

Because next element is less than pivot,
we shall extend the prefix by swapping

19

In-Place Partition in Action

1 3 2 8 7 6 4 5

pivotnext element

Length of prefix = 3

after 5 steps

Because next element is larger than pivot,
no change to prefix

20

In-Place Partition in Action

1 3 2 8 7 6 4 5

pivot
next element

Length of prefix = 3

after 6 steps

Because next element is less than pivot,
we shall extend the prefix by swapping

21

In-Place Partition in Action

1 3 2 4 7 6 8 5

pivot
next element

Length of prefix = 4

after 7 steps

When next element is the pivot, we put it after
the end of the prefix by swapping

22

In-Place Partition in Action

1 3 2 4 5 6 8 7

pivot

Length of prefix = 4

after 8 steps

Partition is done, and return length of prefix

23

Quicksort
The Quicksort algorithm works as follows:

Quicksort(A,p,r) /* to sort array A[p..r] */
1. if (p r) return;
2. q = Partition(A,p,r);
3. Quicksort(A, p, p+q-1);
4. Quicksort(A, p+q+1, r);

To sort A[1..n], we just call Quicksort(A,1,n)

24

Worst-Case Running Time
The worst-case running time of Quicksort can

be expressed by:

T(n) = maxq=0 to n-1 (T(q) + T(n-q-1)) + (n)

We prove T(n)= (n2) by substitution method:
1. Guess T(n) · cn2 for some constant c
2. Next, verify our guess by induction

25

Worst-Case Running Time
Inductive Case:

T(n) = maxq=0 to n-1 (T(q) + T(n-q-1)) + (n)
· maxq=0 to n-1 (cq2 + c(n-q-1)2) + (n)

· c(n-1)2 + (n)

= cn2 - 2cn + c + (n)
· cn2 when c is large enough

Maximized when q = 0
or when q = n-1

Inductive Case is OK now. How about Base Case?

26

Worst-Case Running Time
Conclusion:

1. T(n) = (n2)
2. However, we can also show

T(n) = (n2)
by finding a worst-case input

 T(n) = (n2)

27

Average-Case Running Time
So, Quicksort runs badly for some input…

But suppose that when we store a set of
n numbers into the input array, each of
the n! permutations are equally likely
 Running time varies on input

What will be the “average”running time ?

28

Average Running Time
Let X = # comparisons in all Partition
Later, we will show that

Running time = (n + X) varies on input

Finding average of X (i.e. #comparisons)
gives average running time

Our first target: Compute average of X

29

Average # of Comparisons
We define some notation to help the analysis:
•Let a1, a2, …, an denote the set of n

numbers initially placed in the array

•Further, we assume a1 a2 …an
(So, a1 may not be the element in A[1] originally)

•Let Xij = # comparisons between ai and aj
in all Partition calls

30

Average # of Comparisons
Then, X = # comparisons in all Partition calls

= X12 + X13 + …+ Xn-1,n

 Average # comparisons
= E[X]
= E[X12 + X13 + …+ Xn-1,n]
= E[X12] + E[X13] + …+ E[Xn-1,n]

31

Average # of Comparisons
The next slides will prove: E[Xij] = 2/(j-i+1)

Using this result,

E[X] = i=1 to n-1j=i+1 to n 2/(j-i+1)

= i=1 to n-1k=1 to n-i 2/(k+1)

i=1 to n-1k=1 to n 2/k

= i=1 to n-1(log n) = (n log n)

32

Comparison between ai and aj

Question: # times ai be compared with aj ?
Answer: At most once, which happens only

if ai or aj are chosen as pivot

1 3 2 4 5 6 8 7

pivot

After that, the pivot is fixed and is never
compared with the others

33

Comparison between ai and aj

Question: Will ai always be compared with aj ?
Answer: No. E.g., after Partition in Page 14:

1 3 2 4 5 6 8 7

pivot

we will separately Quicksort the first 4
elements, and then the last 3 elements
 3 is never compared with 8

34

Comparison between ai and aj

Observation:
Consider the elements ai, ai+1, …, aj-1, aj

(i) If ai or aj is first chosen as a pivot,
then ai is compared with aj

(ii) Else, if any element of ai+1, …, aj-1 is
first chosen as a pivot,
then ai is never compared with aj

35

Comparison between ai and aj

When the n! permutations are equally likely
to be the input,

Pr(ai compared with aj once) = 2/(j-i+1)
Pr(ai not compared with aj) = (j-i-1)/(j-i+1)

 E[Xij] = 1 * 2/(j-i+1) + 0 * (j-i-1)/(j-i+1)
= 2/(j-i+1)

Consider ai, ai+1, …, aj-1, aj. Given a permutation, if ai is
chosen a pivot first, then by exchanging ai with ai+1

initially, ai+1 will be chosen as a pivot first

36

Observe that in the Quicksort algorithm:
• Each Partition fixes the position of pivot
 exactly n Partition calls

•After each Partition, we have 2 Quicksort
•Also, all Quicksort (except 1st one: Quicksort(A,1,n))

are invoked after a Partition
 total (n) Quicksort calls

Proof: Running time = (n+X)

37

So, if we ignore the comparison time in all
Partition calls, the time used = (n)

Thus, we include back the comparison time
in all Partition calls,

Running time = (n + X)

Proof: Running time = (n+X)

