
1

CS4311
Design and Analysis of

Algorithms

Lecture 5: Quicksort

2

•Introduce Quicksort
–Cinderella’s New Problem

•Running time of Quicksort
–Worst-Case
–Average-Case

About this lecture

3

Do you remember
Cinderella’s Problem?

I see…

You have to find
the largest bolt

and the largest nut

4

Cinderella’s New Problem

I see…

You have to sort
the bolts and sort

the nuts

5

Fairy Godmother’s Proposal

1. Pick one of the nut
2. Compare this nut with all

other bolts Find those
which are larger, and find
those which are smaller

6

Fairy Godmother’s Proposal

Bolts
smaller
than nut

Bolts
larger

than nutBolt equal
to nut

Done !

picked nut

7

picked nut

Fairy Godmother’s Proposal
3. Pick the bolt that is equal

to the selected nut
4. Compare this bolt with all

other nuts Find those
which are larger, and find
those which are smaller

Bolts
smaller
than nut

Bolts
larger

than nutBolt equal
to nut

8

Fairy Godmother’s Proposal

Nuts smaller
than bolt

Nuts larger
than bolt

Done !

9

Fairy Godmother’s Proposal

5. Sort left part (recursively)
6. Sort right part (recursively)

^^ This is all of my proposal ^^

Nuts smaller
than bolt

Nuts larger
than bolt

10

Fairy Godmother’s Proposal

•Can you see why Fairy Godmother’s
proposal is a correct algorithm?

•What is the running time ?

•Worst-case: (n2) comparisons
•No better than the brute force approach !!

•Though worst-case runs badly, the
average case is good: (n log n) comparisons

11

Quicksort uses Partition
The previous algorithm is exactly Quicksort,

which makes use of a Partition function:

Partition(A,p,r) /* to partition array A[p..r] */
1. Pick an element, say A[t] (called pivot)
2. Let q = #elements less than pivot
3. Put elements less than pivot to A[p..p+q-1]
4. Put pivot to A[p+q]
5. Put remaining elements to A[p+q+1..r]
6. Return q

12

More on Partition
•After Partition(A,p,r), we obtain the value q,

and know that
•Pivot was A[p+q]
•Before A[p+q] : smaller than pivot
•After A[p+q] : larger than pivot

•There are many ways to perform Partition.
One way is shown in the next slides
•It will be an in-place algorithm (using O(1)

extra space in addition to the input array)

13

Ideas for In-Place Partition

•Idea 1: Use A[r] (the last element) as pivot
•Idea 2: Process A[p..r] from left to right

•The prefix (the beginning part) of A stores all
elements less than pivot seen so far

•Use two counters:
•One for the length of the prefix
•One for the element we are looking

14

In-Place Partition in Action

1 3 7 8 2 6 4 5

pivotnext element

Length of prefix = 0

before running

Because next element is less than pivot,
we shall extend the prefix by 1

15

In-Place Partition in Action

1 3 7 8 2 6 4 5

pivotnext element

Length of prefix = 1

after 1 step

Because next element is smaller than pivot, and is
adjacent to the prefix, we extend the prefix

16

In-Place Partition in Action

1 3 7 8 2 6 4 5

pivotnext element

Length of prefix = 2

after 2 steps

Because next element is larger than pivot,
no change to prefix

17

In-Place Partition in Action

1 3 7 8 2 6 4 5

pivotnext element

Length of prefix = 2

after 3 steps

Again, next element is larger than pivot,
no change to prefix

18

In-Place Partition in Action

1 3 7 8 2 6 4 5

pivotnext element

Length of prefix = 2

after 4 steps

Because next element is less than pivot,
we shall extend the prefix by swapping

19

In-Place Partition in Action

1 3 2 8 7 6 4 5

pivotnext element

Length of prefix = 3

after 5 steps

Because next element is larger than pivot,
no change to prefix

20

In-Place Partition in Action

1 3 2 8 7 6 4 5

pivot
next element

Length of prefix = 3

after 6 steps

Because next element is less than pivot,
we shall extend the prefix by swapping

21

In-Place Partition in Action

1 3 2 4 7 6 8 5

pivot
next element

Length of prefix = 4

after 7 steps

When next element is the pivot, we put it after
the end of the prefix by swapping

22

In-Place Partition in Action

1 3 2 4 5 6 8 7

pivot

Length of prefix = 4

after 8 steps

Partition is done, and return length of prefix

23

Quicksort
The Quicksort algorithm works as follows:

Quicksort(A,p,r) /* to sort array A[p..r] */
1. if (p r) return;
2. q = Partition(A,p,r);
3. Quicksort(A, p, p+q-1);
4. Quicksort(A, p+q+1, r);

To sort A[1..n], we just call Quicksort(A,1,n)

24

Worst-Case Running Time
The worst-case running time of Quicksort can

be expressed by:

T(n) = maxq=0 to n-1 (T(q) + T(n-q-1)) + (n)

We prove T(n)= (n2) by substitution method:
1. Guess T(n) · cn2 for some constant c
2. Next, verify our guess by induction

25

Worst-Case Running Time
Inductive Case:

T(n) = maxq=0 to n-1 (T(q) + T(n-q-1)) + (n)
· maxq=0 to n-1 (cq2 + c(n-q-1)2) + (n)

· c(n-1)2 + (n)

= cn2 - 2cn + c + (n)
· cn2 when c is large enough

Maximized when q = 0
or when q = n-1

Inductive Case is OK now. How about Base Case?

26

Worst-Case Running Time
Conclusion:

1. T(n) = (n2)
2. However, we can also show

T(n) = (n2)
by finding a worst-case input

 T(n) = (n2)

27

Average-Case Running Time
So, Quicksort runs badly for some input…

But suppose that when we store a set of
n numbers into the input array, each of
the n! permutations are equally likely
 Running time varies on input

What will be the “average”running time ?

28

Average Running Time
Let X = # comparisons in all Partition
Later, we will show that

Running time = (n + X) varies on input

Finding average of X (i.e. #comparisons)
gives average running time

Our first target: Compute average of X

29

Average # of Comparisons
We define some notation to help the analysis:
•Let a1, a2, …, an denote the set of n

numbers initially placed in the array

•Further, we assume a1 a2 …an
(So, a1 may not be the element in A[1] originally)

•Let Xij = # comparisons between ai and aj
in all Partition calls

30

Average # of Comparisons
Then, X = # comparisons in all Partition calls

= X12 + X13 + …+ Xn-1,n

 Average # comparisons
= E[X]
= E[X12 + X13 + …+ Xn-1,n]
= E[X12] + E[X13] + …+ E[Xn-1,n]

31

Average # of Comparisons
The next slides will prove: E[Xij] = 2/(j-i+1)

Using this result,

E[X] = i=1 to n-1j=i+1 to n 2/(j-i+1)

= i=1 to n-1k=1 to n-i 2/(k+1)

i=1 to n-1k=1 to n 2/k

= i=1 to n-1(log n) = (n log n)

32

Comparison between ai and aj

Question: # times ai be compared with aj ?
Answer: At most once, which happens only

if ai or aj are chosen as pivot

1 3 2 4 5 6 8 7

pivot

After that, the pivot is fixed and is never
compared with the others

33

Comparison between ai and aj

Question: Will ai always be compared with aj ?
Answer: No. E.g., after Partition in Page 14:

1 3 2 4 5 6 8 7

pivot

we will separately Quicksort the first 4
elements, and then the last 3 elements
 3 is never compared with 8

34

Comparison between ai and aj

Observation:
Consider the elements ai, ai+1, …, aj-1, aj

(i) If ai or aj is first chosen as a pivot,
then ai is compared with aj

(ii) Else, if any element of ai+1, …, aj-1 is
first chosen as a pivot,
then ai is never compared with aj

35

Comparison between ai and aj

When the n! permutations are equally likely
to be the input,

Pr(ai compared with aj once) = 2/(j-i+1)
Pr(ai not compared with aj) = (j-i-1)/(j-i+1)

 E[Xij] = 1 * 2/(j-i+1) + 0 * (j-i-1)/(j-i+1)
= 2/(j-i+1)

Consider ai, ai+1, …, aj-1, aj. Given a permutation, if ai is
chosen a pivot first, then by exchanging ai with ai+1

initially, ai+1 will be chosen as a pivot first

36

Observe that in the Quicksort algorithm:
• Each Partition fixes the position of pivot
 exactly n Partition calls

•After each Partition, we have 2 Quicksort
•Also, all Quicksort (except 1st one: Quicksort(A,1,n))

are invoked after a Partition
 total (n) Quicksort calls

Proof: Running time = (n+X)

37

So, if we ignore the comparison time in all
Partition calls, the time used = (n)

Thus, we include back the comparison time
in all Partition calls,

Running time = (n + X)

Proof: Running time = (n+X)

