CS4311

Design and Analysis of
Algorithms

Lecture 4. Heapsort



About this lecture

* Introduce Heap

- Shape Property and Heap Property
- Heap Operations

Heapsort: Use Heap to Sort
Fixing heap property for all nodes
Use Array to represent Heap

* Introduce Priority Queue



Heap

A heap (or binary heap) is a binary tree
that satisfies both:
(1) Shape Property
- All levels, except deepest, are fully filled
- Deepest level is filled from left to right
(2) Heap Property

- Value of a node < Value of its children



Satisfying Shape Property

Example of a tree with
shape property



Not Satisfying Shape Property

This level (not deepest)
is NOT fully filled



Not Satisfying Shape Property

Deepest level NOT ]
filled from left to right



Satisfying Heap Property




Not Satisfying Heap Property
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Help!




Min Heap

Q. Given a heap, what is so special about
the root's value?

A. ..always the minimum

Because of this, the previous heap
is also called a min heap



Heap Operations

Find-Min : find the minimum value

= (1) time

Extract-Min : delete the minimum value
2 O(log n) time (how??)

Insert : insert a new value into heap

= O(log n) time  (how??)

n = # nodes in the heap
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How to do Extract-Min?

Heap before Extract-Min
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Step 1. Restore Shape Property

Copy value of last node to root.
Next, remove last node
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Step 2: Restore Heap Property

Next, highlight the root
=> Only this node may violate heap property

e

If violates, swap highlighted node with "smaller” child
(if not, everything done)
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Step 2: Restore Heap Property

After swapping, only the highlighted
node may violate heap property

s

If violates, swap highlighted node with "smaller” child
(if not, everything done)
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Step 2: Restore Heap Property

As soon as the highlighted node
satisfies the heap property

1l

Everything done Il
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How to do Insert?

Heap before Insert
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Step 1. Restore Shape Property

Create a new node with the new value.
Next, add it to the heap at correct position
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Step 2: Restore Heap Property

Highlight the new node

=> Only this node’s parent
may violate heap property

s

If violates, swap highlighted node with parent
(if not, everything done)



Step 2: Restore Heap Property

After swapping, only
highlighted node’s parent
may violate heap property

s

If violates, swap highlighted node with parent
(if not, everything done)



Step 2: Restore Heap Property

As soon as highlighted node's
parent satisfies heap property

l

Everything done !l
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Running Time

Let h = height of heap

Both Extract-Min and Insert require
O(h) time to perform

Since h = O(log n)  (why??)
= Both require O(log n) time

n = # nodes in the heap
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Heapsort
Q. Given n numbers, can we use heap to sort
them, say, in ascending order?

A. Yes, and extremely easy !l
1. Call Insert to insert n numbers into heap
2. Call Extract-Min n times
=> numbers are output in sorted order

Runtime: nxO(log n) + nxO(log n) = O(h log n)

This sorting algorithm is called heapsort

22



Challenge
(Fixing heap property for all nodes)

Suppose that we are given a binary tree
which satisfies the shape property

However, the heap property of the nodes
may not be satisfied ...

Question: Can we make the tree into a heap
in O(n) time?

n = # nodes in the tree
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How to make it a heap?
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Observation

u= root of abinary tree u
L = subtree rooted at u's (
left child

R = subtree rooted at u's A A
right child

Obs: If L and R satisfy heap property, we can make
the tree rooted at u satisfy heap property in

O( max { height(L), height(R)} ) time.
We denote the above operation by Heapify(u)
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Heapify

Then, for any tree T, we can make T satisfy
the heap property as follows:

Step 1. h = height(T)
Step 2. fork=h, h-1, .., 1
for each node u at level k

Heapify(u) .

Why is the above algorithm correct?
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Example Run

\ First, heapify this tree
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Example Run

Next, heapify this tree
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Example Run

\ Next, heapify this tree
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Example Run
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Example Run
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Example Run
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Example Run

Next, heapify this tree
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Example Run
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Example Run

~
” ~
” ~

Finally, heapify the whole tree
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Example Run

Everything Done |
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Back to the Challenge
(Fixing heap property for all nodes)

Suppose that we are given a binary tree
which satisfies the shape property

However, the heap property of the nodes
may not be satisfied ...

Question: Can we make the tree into a heap
in O(n) time?

n = # nodes in the tree
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Back to the Challenge
(Fixing heap property for all nodes)

Let h = height of tree
So, 2 <n<2h-1

(why??)

For a tree with shape property,

at most 2"! nodes at
exactly 2h-? nodes at
exactly 2"-3 nodes at

eve
eve
eve

h,
h-1,
h-2, ..
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Back to the Challenge
(Fixing heap property for all nodes)

Using the previous algorithm to solve the
challenge, the total time is at most

2h-lxl + 2h2x2 + 233+ .+ 1xh [why??]
= 20 (1xd + 2x(3)2+ 3x(3)+ . + hx(2)P)
< thk=1 to oo kx(z)k = 2" x 2 < 4n

= Thus, total time is O(n)
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Array Representation of Heap

Given a heap.

Suppose we mark the
position of root as 1,
and mark other nodes in
a way as shown in the
right figure. (BFS order)

Anything special about
this marking?
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Array Representation of Heap

Yes, something special:

1. If the heap hasn
nodes, the marks are
from1ton

2. Children of x, if exist,
are 2x and 2x+1

8
3. Parent of xis | x/2 | @
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Array Representation of Heap

The special properties about the marking
immediately gives the following:

We can use an array A[l..n] fo represent a
heap of size n

Advantage:
Avoid storing or using tree pointers I
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Max Heap

We can also define a max heap, by changing
the heap property to:

Value of a node > Value of its children

Max heap supports the following operations:
(1) Find Max, (2) Extract Max, (3) Insert

Do you know how to do these operations?
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Priority Queue

Let S = a set of items, each has a humeric key value

Priority queue on S is a data structure that
supports the following operations:

Min(S): return item with min key

Extract-Min(S): return and remove item with min key
Insert(S,x,k): insert item x with key k into S
Decrease-Key(S,x k): decrease key of item x to k



A Scheme for Priority Queue

1. Store the items in a table.
2. Use a heap to store keys of the items.
3. Store links between an item and its key

E.g.,

item 1

item 2

item 9

\ This node store
item 1's key
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A Scheme for Priority Queue

The previous scheme can immediately support Min,
Extract-Min, and Insert.

Also it can support Decrease-Key in O(log n) time.
E.g.,

Node storing key @ —~
value of item x

How do we decrease
the key to k ??
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Other Schemes?

In later lectures, we will look at other ways to
implement a priority queue

Basically, they will have some trade-off
between efficiency of the operations

Remark: Min-Priority Queue is useful in MST or
shortest path algorithm

Remark: Max-Priority Queue supports Max,
Extract-Max, Insert, and Increase-Key and
is useful in job scheduling
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