CS4311

Design and Analysis of
Algorithms

Lecture 4. Heapsort

About this lecture

* Introduce Heap

- Shape Property and Heap Property
- Heap Operations

Heapsort: Use Heap to Sort
Fixing heap property for all nodes
Use Array to represent Heap

* Introduce Priority Queue

Heap

A heap (or binary heap) is a binary tree
that satisfies both:
(1) Shape Property
- All levels, except deepest, are fully filled
- Deepest level is filled from left to right
(2) Heap Property

- Value of a node < Value of its children

Satisfying Shape Property

Example of a tree with
shape property

Not Satisfying Shape Property

This level (not deepest)
is NOT fully filled

Not Satisfying Shape Property

Deepest level NOT]
filled from left to right

Satisfying Heap Property

Not Satisfying Heap Property

;

ﬁ’
E——
" " :_—: —ang
© [o <>
| = | ==) W ~a

Help!

Min Heap

Q. Given a heap, what is so special about
the root's value?

A. ..always the minimum

Because of this, the previous heap
is also called a min heap

Heap Operations

Find-Min : find the minimum value

= (1) time

Extract-Min : delete the minimum value
2 O(log n) time (how??)

Insert : insert a new value into heap

= O(log n) time (how??)

n = # nodes in the heap

10

How to do Extract-Min?

Heap before Extract-Min

11

Step 1. Restore Shape Property

Copy value of last node to root.
Next, remove last node

12

Step 2: Restore Heap Property

Next, highlight the root
=> Only this node may violate heap property

e

If violates, swap highlighted node with "smaller” child
(if not, everything done)

13

Step 2: Restore Heap Property

After swapping, only the highlighted
node may violate heap property

s

If violates, swap highlighted node with "smaller” child
(if not, everything done)

14

Step 2: Restore Heap Property

As soon as the highlighted node
satisfies the heap property

1l

Everything done Il

15

How to do Insert?

Heap before Insert

16

Step 1. Restore Shape Property

Create a new node with the new value.
Next, add it to the heap at correct position

17

Step 2: Restore Heap Property

Highlight the new node

=> Only this node’s parent
may violate heap property

s

If violates, swap highlighted node with parent
(if not, everything done)

Step 2: Restore Heap Property

After swapping, only
highlighted node’s parent
may violate heap property

s

If violates, swap highlighted node with parent
(if not, everything done)

Step 2: Restore Heap Property

As soon as highlighted node's
parent satisfies heap property

l

Everything done !l

20

Running Time

Let h = height of heap

Both Extract-Min and Insert require
O(h) time to perform

Since h = O(log n) (why??)
= Both require O(log n) time

n = # nodes in the heap

21

Heapsort
Q. Given n numbers, can we use heap to sort
them, say, in ascending order?

A. Yes, and extremely easy !l
1. Call Insert to insert n numbers into heap
2. Call Extract-Min n times
=> numbers are output in sorted order

Runtime: nxO(log n) + nxO(log n) = O(h log n)

This sorting algorithm is called heapsort

22

Challenge
(Fixing heap property for all nodes)

Suppose that we are given a binary tree
which satisfies the shape property

However, the heap property of the nodes
may not be satisfied ...

Question: Can we make the tree into a heap
in O(n) time?

n = # nodes in the tree

23

How to make it a heap?

24

Observation

u= root of abinary tree u
L = subtree rooted at u's (
left child

R = subtree rooted at u's A A
right child

Obs: If L and R satisfy heap property, we can make
the tree rooted at u satisfy heap property in

O(max { height(L), height(R)}) time.
We denote the above operation by Heapify(u)

25

Heapify

Then, for any tree T, we can make T satisfy
the heap property as follows:

Step 1. h = height(T)
Step 2. fork=h, h-1, .., 1
for each node u at level k

Heapify(u) .

Why is the above algorithm correct?

26

Example Run

\ First, heapify this tree

27

Example Run

Next, heapify this tree

28

Example Run

\ Next, heapify this tree

29

Example Run

30

Example Run

31

Example Run

32

Example Run

Next, heapify this tree

33

Example Run

34

Example Run

~
” ~
” ~

Finally, heapify the whole tree

35

Example Run

Everything Done |

36

Back to the Challenge
(Fixing heap property for all nodes)

Suppose that we are given a binary tree
which satisfies the shape property

However, the heap property of the nodes
may not be satisfied ...

Question: Can we make the tree into a heap
in O(n) time?

n = # nodes in the tree

37

Back to the Challenge
(Fixing heap property for all nodes)

Let h = height of tree
So, 2 <n<2h-1

(why??)

For a tree with shape property,

at most 2"! nodes at
exactly 2h-? nodes at
exactly 2"-3 nodes at

eve
eve
eve

h,
h-1,
h-2, ..

38

Back to the Challenge
(Fixing heap property for all nodes)

Using the previous algorithm to solve the
challenge, the total time is at most

2h-lxl + 2h2x2 + 233+ .+ 1xh [why??]
= 20 (1xd + 2x(3)2+ 3x(3)+ . + hx(2)P)
< thk=1 to oo kx(z)k = 2" x 2 < 4n

= Thus, total time is O(n)

39

Array Representation of Heap

Given a heap.

Suppose we mark the
position of root as 1,
and mark other nodes in
a way as shown in the
right figure. (BFS order)

Anything special about
this marking?

40

Array Representation of Heap

Yes, something special:

1. If the heap hasn
nodes, the marks are
from1ton

2. Children of x, if exist,
are 2x and 2x+1

8
3. Parent of xis | x/2 | @

41

Array Representation of Heap

The special properties about the marking
immediately gives the following:

We can use an array A[l..n] fo represent a
heap of size n

Advantage:
Avoid storing or using tree pointers I

42

Max Heap

We can also define a max heap, by changing
the heap property to:

Value of a node > Value of its children

Max heap supports the following operations:
(1) Find Max, (2) Extract Max, (3) Insert

Do you know how to do these operations?

43

Priority Queue

Let S = a set of items, each has a humeric key value

Priority queue on S is a data structure that
supports the following operations:

Min(S): return item with min key

Extract-Min(S): return and remove item with min key
Insert(S,x,k): insert item x with key k into S
Decrease-Key(S,x k): decrease key of item x to k

A Scheme for Priority Queue

1. Store the items in a table.
2. Use a heap to store keys of the items.
3. Store links between an item and its key

E.g.,

item 1

item 2

item 9

\ This node store
item 1's key

45

A Scheme for Priority Queue

The previous scheme can immediately support Min,
Extract-Min, and Insert.

Also it can support Decrease-Key in O(log n) time.
E.g.,

Node storing key @ —~
value of item x

How do we decrease
the key to k ??

46

Other Schemes?

In later lectures, we will look at other ways to
implement a priority queue

Basically, they will have some trade-off
between efficiency of the operations

Remark: Min-Priority Queue is useful in MST or
shortest path algorithm

Remark: Max-Priority Queue supports Max,
Extract-Max, Insert, and Increase-Key and
is useful in job scheduling

a7

