CS4311 Design and Analysis of Algorithms

Lecture 4: Heapsort

1

About this lecture

- Introduce Heap
 - Shape Property and Heap Property
 - Heap Operations
- Heapsort: Use Heap to Sort
- Fixing heap property for all nodes
- Use Array to represent Heap
- Introduce Priority Queue

Heap

- A heap (or binary heap) is a binary tree that satisfies both:
 - (1) Shape Property
 - All levels, except deepest, are fully filled
 - Deepest level is filled from left to right
 - (2) Heap Property
 - Value of a node \leq Value of its children

Satisfying Shape Property

Not Satisfying Shape Property

Not Satisfying Shape Property Deepest level NOT filled from left to right

Satisfying Heap Property

Not Satisfying Heap Property

Min Heap

Q. Given a heap, what is so special about the root's value?

A. ... always the minimum

Because of this, the previous heap is also called a min heap

Heap Operations

- Find-Min : find the minimum value $\rightarrow \Theta(1)$ time
- Extract-Min : delete the minimum value
 → O(log n) time (how??)
- Insert: insert a new value into heap → $O(\log n)$ time (how??)

n = # nodes in the heap

How to do Extract-Min?

Heap before Extract-Min

Copy value of last node to root. Next, remove last node

How to do Insert?

Heap before Insert

Step 1: Restore Shape Property

Create a new node with the new value. Next, add it to the heap at correct position

Running Time

Let h = height of heap

- Both Extract-Min and Insert require
 O(h) time to perform
- Since $h = \Theta(\log n)$ (why??)
 - → Both require O(log n) time

n = # nodes in the heap

Heapsort

- Q. Given n numbers, can we use heap to sort them, say, in ascending order?
- A. Yes, and extremely easy !!!
 - 1. Call Insert to insert n numbers into heap
 - 2. Call Extract-Min n times
 - numbers are output in sorted order

Runtime: $n \times O(\log n) + n \times O(\log n) = O(n \log n)$

This sorting algorithm is called heapsort

Challenge (Fixing heap property for all nodes)

Suppose that we are given a binary tree which satisfies the shape property However, the heap property of the nodes may not be satisfied ...

Question: Can we make the tree into a heap in O(n) time?

n = # nodes in the tree

How to make it a heap?

Observation

- **u** = root of a binary tree
- L = subtree rooted at u's left child
- R = subtree rooted at u's right child

Obs: If L and R satisfy heap property, we can make the tree rooted at u satisfy heap property in O(max { height(L), height(R) }) time.

We denote the above operation by Heapify(u)

Heapify

Then, for any tree T, we can make T satisfy the heap property as follows:

```
Step 1. h = height(T);
```

```
Step 2. for k = h, h-1, ..., 1
```

for each node u at level k

Heapify(u);

Why is the above algorithm correct?

Back to the Challenge (Fixing heap property for all nodes)

Suppose that we are given a binary tree which satisfies the shape property However, the heap property of the nodes may not be satisfied ...

Question: Can we make the tree into a heap in O(n) time?

n = # nodes in the tree

Back to the Challenge (Fixing heap property for all nodes)

Let h = height of tree So, $2^{h-1} \le n \le 2^h - 1$ (why??) For a tree with shape property, at most 2^{h-1} nodes at level h, exactly 2^{h-2} nodes at level h-1, exactly 2^{h-3} nodes at level h-2, ... Back to the Challenge (Fixing heap property for all nodes)

Using the previous algorithm to solve the challenge, the total time is at most

 $\begin{array}{l} 2^{h-1} \times 1 + 2^{h-2} \times 2 + 2^{h-3} \times 3 + ... + 1 \times h \quad [why??] \\ = 2^{h} \left(1 \times \frac{1}{2} + 2 \times (\frac{1}{2})^{2} + 3 \times (\frac{1}{2})^{3} + ... + h \times (\frac{1}{2})^{h} \right) \\ \leq 2^{h} \sum_{k=1 \text{ to } \infty} k \times (\frac{1}{2})^{k} = 2^{h} \times 2 \leq 4n \\ & \rightarrow \text{ Thus, total time is } O(n) \end{array}$

Array Representation of Heap

Given a heap.

Suppose we mark the position of root as 1, and mark other nodes in a way as shown in the right figure. (BFS order)

Anything special about this marking?

Array Representation of Heap

Yes, something special:

- 1. If the heap has n nodes, the marks are from 1 to n
- 2. Children of x, if exist, are 2x and 2x+1
- 3. Parent of x is $\lfloor x/2 \rfloor$

Array Representation of Heap

The special properties about the marking immediately gives the following:

We can use an array A[1..n] to represent a heap of size n

Advantage: Avoid storing or using tree pointers !!

Max Heap

We can also define a max heap, by changing the heap property to: Value of a node \geq Value of its children

Max heap supports the following operations: (1) Find Max, (2) Extract Max, (3) Insert

Do you know how to do these operations?

Priority Queue

Let S = a set of items, each has a numeric key value Priority queue on S is a data structure that supports the following operations: Min(S): return item with min key Extract-Min(S): return and remove item with min key Insert(S,x,k): insert item x with key k into S Decrease-Key(S,x,k): decrease key of item x to k

A Scheme for Priority Queue

- 1. Store the items in a table.
- 2. Use a heap to store keys of the items.
- 3. Store links between an item and its key

A Scheme for Priority Queue

The previous scheme can immediately support Min, Extract-Min, and Insert.

Also it can support Decrease-Key in O(log n) time.

Node storing key value of item x

How do we decrease the key to k ??

Other Schemes?

In later lectures, we will look at other ways to implement a priority queue

 Basically, they will have some trade-off between efficiency of the operations

Remark: Min-Priority Queue is useful in MST or shortest path algorithm

Remark: Max-Priority Queue supports Max, Extract-Max, Insert, and Increase-Key and is useful in job scheduling