
1

CS4311
Design and Analysis of

Algorithms

Lecture 4: Heapsort

2

•Introduce Heap
–Shape Property and Heap Property
–Heap Operations

•Heapsort: Use Heap to Sort
•Fixing heap property for all nodes
•Use Array to represent Heap
•Introduce Priority Queue

About this lecture

3

A heap (or binary heap) is a binary tree
that satisfies both:

(1) Shape Property
– All levels, except deepest, are fully filled
– Deepest level is filled from left to right
(2) Heap Property
– Value of a node · Value of its children

Heap

4

Satisfying Shape Property

Example of a tree with
shape property

5

Not Satisfying Shape Property

This level (not deepest)
is NOT fully filled

6

Not Satisfying Shape Property

Deepest level NOT
filled from left to right

7

Satisfying Heap Property

8

Not Satisfying Heap Property

Help!

9

Q.Q. Given a heap, what is so special about
the root’s value?

A.A. …always the minimum

Min Heap

Because of this, the previous heap
is also called a min heap

10

• Find-Min : find the minimum value

 (1) time
• Extract-Min : delete the minimum value

 (log n) time (how??)

• Insert : insert a new value into heap

 (log n) time (how??)

Heap Operations

n = # nodes in the heap

11

How to do Extract-Min?
3

8 4

2313 12 24

3843

Heap before Extract-Min

12

Step 1: Restore Shape Property
3

8 4

2313 12 24

3843

Copy value of last node to root.
Next, remove last node

13

Next, highlight the root
 Only this node may violate heap property

Step 2: Restore Heap Property
38

8 4

2313 12 24

43

If violates, swap highlighted node with “smaller”child
(if not, everything done)

14

Step 2: Restore Heap Property
4

8 38

2313 12 24

43
After swapping, only the highlighted

node may violate heap property

If violates, swap highlighted node with “smaller”child
(if not, everything done)

15

Step 2: Restore Heap Property
4

8 12

2313 38 24

43
As soon as the highlighted node

satisfies the heap property

Everything done !!!

16

How to do Insert?
3

8 4

2313 12 24

3843

Heap before Insert

17

Step 1: Restore Shape Property
3

8 4

2313 12 24

3843

Create a new node with the new value.
Next, add it to the heap at correct position

5

18

Highlight the new node
 Only this node’s parent
may violate heap property

Step 2: Restore Heap Property
3

8 4

2313 12 24

3843 5

If violates, swap highlighted node with parent
(if not, everything done)

19

After swapping, only
highlighted node’s parent
may violate heap property

3

8 4

513 12 24

3843 23

Step 2: Restore Heap Property

If violates, swap highlighted node with parent
(if not, everything done)

20

As soon as highlighted node’s
parent satisfies heap property

3

5 4

813 12 24

3843 23

Step 2: Restore Heap Property

Everything done !!!

21

Let h = height of heap
• Both Extract-Min and Insert require

(h) time to perform

Since h = (log n) (why??)

 Both require (log n) time

Running Time

n = # nodes in the heap

22

Q.Q. Given n numbers, can we use heap to sort
them, say, in ascending order?

A.A. Yes, and extremely easy !!!
1. Call Insert to insert n numbers into heap
2. Call Extract-Min n times
 numbers are output in sorted order

Runtime: n£(log n) + n£(log n) = (n log n)

Heapsort

This sorting algorithm is called heapsort

23

Suppose that we are given a binary tree
which satisfies the shape property

However, the heap property of the nodes
may not be satisfied …

Question: Can we make the tree into a heap
in (n) time?

Challenge
(Fixing heap property for all nodes)

n = # nodes in the tree

24

How to make it a heap?

12

4 13

2343 8 3

3824

25

u = root of a binary tree
L = subtree rooted at u’s

left child
R = subtree rooted at u’s

right child

Observation
u

RL

Obs: If L and R satisfy heap property, we can make
the tree rooted at u satisfy heap property in
(max { height(L), height(R) }) time.

We denote the above operation by Heapify(u)

26

Heapify

Then, for any tree T, we can make T satisfy
the heap property as follows:

Step 1. h = height(T) ;

Step 2. for k = h, h-1, …, 1

for each node u at level k

Heapify(u) ;

Why is the above algorithm correct?

27

Example Run
12

4 13

2343 8 3

3824

First, heapify this tree

28

Example Run
12

4 13

2343 8 3

3824

Next, heapify this tree

29

Example Run
12

4 13

2343 8 3

3824

Next, heapify this tree

30

Example Run
12

4 13

2324 8 3

3843 Next, heapify this tree

31

Example Run
12

4 13

2324 8 3

3843
Next, heapify this tree

32

Example Run
12

4 13

2324 8 3

3843
Next, heapify this tree

33

Example Run
12

4 13

2324 8 3

3843

Next, heapify this tree

34

Example Run
12

4 13

2324 8 3

3843
Next, heapify this tree

35

Example Run
12

4 3

2324 8 13

3843

Finally, heapify the whole tree

36

Example Run
3

4 8

2324 12 13

3843

Everything Done !

37

Suppose that we are given a binary tree
which satisfies the shape property

However, the heap property of the nodes
may not be satisfied …

Question: Can we make the tree into a heap
in (n) time?

Back to the Challenge
(Fixing heap property for all nodes)

n = # nodes in the tree

38

Let h = height of tree
So, 2h-1 · n · 2h - 1 (why??)

For a tree with shape property,
at most 2h-1 nodes at level h,
exactly 2h-2 nodes at level h-1,
exactly 2h-3 nodes at level h-2, …

Back to the Challenge
(Fixing heap property for all nodes)

39

Using the previous algorithm to solve the
challenge, the total time is at most

2h-1£1 + 2h-2£2 + 2h-3£3 + …+ 1£h [why??]

= 2h (1£½ + 2£(½)2 + 3£(½)3 + …+ h£(½)h)

· 2hk=1 to 1 k£(½)k = 2h £ 2 · 4n

 Thus, total time is O(n)

Back to the Challenge
(Fixing heap property for all nodes)

40

Array Representation of Heap

??

?? ??

???? ?? ??

????

1

2 3

4 5 6 7

8 9

Given a heap.

Suppose we mark the
position of root as 1,
and mark other nodes in
a way as shown in the
right figure. (BFS order)

Anything special about
this marking?

41

Array Representation of Heap

??

?? ??

???? ?? ??

????

1

2 3

4 5 6 7

8 9

Yes, something special:

1. If the heap has n
nodes, the marks are
from 1 to n

2. Children of x, if exist,
are 2x and 2x+1

3. Parent of x is b x/2 c

42

The special properties about the marking
immediately gives the following:

We can use an array A[1..n] to represent a
heap of size n

Array Representation of Heap

Advantage:
Avoid storing or using tree pointers !!

43

Max Heap

We can also define a max heap, by changing
the heap property to:
Value of a node ¸ Value of its children

Max heap supports the following operations:
(1) Find Max, (2) Extract Max, (3) Insert

Do you know how to do these operations?

44

Priority Queue

Let S = a set of items, each has a numeric key value
Priority queue on S is a data structure that

supports the following operations:
Min(S): return item with min key

Extract-Min(S): return and remove item with min key

Insert(S,x,k): insert item x with key k into S

Decrease-Key(S,x,k): decrease key of item x to k

45

A Scheme for Priority Queue
1. Store the items in a table.
2. Use a heap to store keys of the items.
3. Store links between an item and its key
E.g.,

item 9



item 2

item 1

This node store
item 1’s key

46

The previous scheme can immediately support Min,
Extract-Min, and Insert.

Also it can support Decrease-Key in O(log n) time.
E.g.,

Node storing key
value of item x

How do we decrease
the key to k ??

A Scheme for Priority Queue

47

In later lectures, we will look at other ways to
implement a priority queue

• Basically, they will have some trade-off
between efficiency of the operations

Remark: Min-Priority Queue is useful in MST or
shortest path algorithm

Remark: Max-Priority Queue supports Max,
Extract-Max, Insert, and Increase-Key and
is useful in job scheduling

Other Schemes?

