
1

CS4311
Design and Analysis of

Algorithms

Lecture 27:
Single-Source Shortest-Path

2

About this lecture
•What is the problem about ?

•Dijkstra’s Algorithm [1959]

•~ Prim’s Algorithm [1957]

•Folklore Algorithm for DAG [???]

•Bellman-Ford Algorithm
•Discovered by Bellman [1958], Ford [1962]

•Allowing negative edge weights

3

•Let G = (V,E) be a weighted graph
•the edges in G have weights
•can be directed/undirected
•can be connected/disconnected

•Let s be a special vertex, called source

Target: For each vertex v, compute the
length of shortest path from s to v

Single-Source Shortest Path

4

•E.g.,

Single-Source Shortest Path

4

8

11

8 7
9

10

144

21

2

67
s

4

8

11

8 7
9

10

144

21

2

67
s 0

4 12 19

21

119

14

8

5

Relax
•A common operation that is used in the

three algorithms is called Relax :
when a vertex v can be reached from the
source with a certain distance, we examine
an outgoing edge, say (v,w), and check if
we can improve w

•E.g., 4

8

11

8

1

2

67
s 0

4 ?

?

? ?

v
Can we improve this?

Can we improve these?

6

Dijkstra’s Algorithm
Dijkstra(G, s)

For each vertex v,
Mark v as unvisited, and set d(v) = 1 ;

Set d(s) = 0 ;
while (there is unvisited vertex) {

v = unvisited vertex with smallest d ;
Visit v, and Relax all its outgoing edges;

}
return d ;

7

Example

4

8

11

8 7
9

10

144

21

2

67

s
1

1

11

1

10

1

1

4

8

11

8 7
9

10

144

21

2

67
1

1

1

1

10

4

8

Relax

1
s

8

Example

4

8

11

8 7
9

10

144

21

2

67

s
1

1

11

1

10

4

8

4

8

11

8 7
9

10

144

21

2

67
1

1

1

1

10

4

8

Relax

12
s

9

Example

4

8

11

8 7
9

10

144

21

2

67

s
1

1

1

1

10

4

8

12

4

8

11

8 7
9

10

144

21

2

67
1

1

1

0

4

8

Relax

12

9

15
s

10

Example

4

8

11

8 7
9

10

144

21

2

67

s
1

1

1

0

4

8

12

9

15

4

8

11

8 7
9

10

144

21

2

67
1

1

0

4

8

Relax

12

9

15

11

s

11

Example

4

8

11

8 7
9

10

144

21

2

67

s
1

1

0

4

8

12

9

15

11

4

8

11

8 7
9

10

144

21

2

67
0

4

8

Relax

12

9

15

11

25

21
s

12

Example

4

8

11

8 7
9

10

144

21

2

67

s
0

4

8

12

9

15

11

25

21

4

8

11

8 7
9

10

144

21

2

67
0

4

8

Relax

12

9

14

11

19

21
s

13

Example

4

8

11

8 7
9

10

144

21

2

67

s
0

4

8

12

9

14

11

19

21

Relax

4

8

11

8 7
9

10

144

21

2

67

s
0

4

8

12

9

14

11

19

21

14

Example

4

8

11

8 7
9

10

144

21

2

67

s
0

4

8

12

9

14

11

19

21

Relax

4

8

11

8 7
9

10

144

21

2

67

s
0

4

8

12

9

14

11

19

21

15

Example

4

8

11

8 7
9

10

144

21

2

67

s
0

4

8

12

9

14

11

19

21

Relax

4

8

11

8 7
9

10

144

21

2

67

s
0

4

8

12

9

14

11

19

21

16

Correctness
Theorem:

The kth vertex closest to the source s is
selected at the kth step inside the while
loop of Dijkstra’s algorithm
Also, by the time a vertex v is selected,
d(v) will store the length of the shortest
path from s to v

How to prove ? (By induction)

17

Proof
•Both statements are true for k = 1 ;
•Let vj = jth closest vertex from s
•Now, suppose both statements are true

for k = 1, 2, …, r-1
•Consider the rth closest vertex vr

•If there is no path from s to vr

 d(vr) = 1 is never changed

•Else, there must be a shortest path
from s to vr ; Let vt be the vertex
immediately before vr in this path

18

•Then, we have t r-1 (why??)

 d(vr) is set correctly once vt is selected,
and the edge (vt,vr) is relaxed (why??)

 After that, d(vr) is fixed (why??)

 d(vr) is correct when vr is selected ;
also, vr must be selected at the rth step,
because no unvisited nodes can have a
smaller d value at that time

Thus, the proof of inductive case completes

Proof (cont)

19

Performance
•Dijkstra’s algorithm is similar to Prim’s
•By using Fibonacci Heap,

•Relax  Decrease-Key
•Pick vertex  Extract-Min

•Running Time:
•O(V) Insert/Extract-Min
•At most O(E) Decrease-Key
 Total Time: O(E + V log V)

20

Finding Shortest Path in DAG
We have a faster algorithm for DAG :
DAG-Shortest-Path(G, s)

Topological Sort G ;
For each v, set d(v) = 1 ; Set d(s) = 0 ;

for (k = 1 to |V|) {
v = kth vertex in topological order ;
Relax all outgoing edges of v ;

}
return d ;

21

Example

Topological
Sort

8

s
4 3 2 6

5

11

4

8

11

3

2

65

s

22

Example

8

s
4 3 2 6

5

11

1 0 1 1 1 1

Process
this node

8

s
4 3 2 6

5

11

Relax

1 1 10 1 1

23

Example

8

s
4 3 2 6

5

11

1 0 1 1 1 1

8

s
4 3 2 6

5

11

Relax

1 1 10 3 11

Process
this node

24

Example

Process
this node

8

s
4 3 2 6

5

11

1 0 1 13 11

8

s
4 3 2 6

5

11

Relax

1 10 3 115

25

Example

Process
this node

8

s
4 3 2 6

5

11

1 0 13 115

8

s
4 3 2 6

5

11

Relax

1 0 3 105 11

26

Example

Process
this node

8

s
4 3 2 6

5

11

1 0 3 105 11

8

s
4 3 2 6

5

11

Relax

1 0 3 105 11

27

Example

Process
this node

8

s
4 3 2 6

5

11

Relax

1 0 3 105 11

8

s
4 3 2 6

5

11

1 0 3 105 11

28

Correctness
Theorem:

By the time a vertex v is selected,
d(v) will store the length of the shortest
path from s to v

How to prove ? (By induction)

29

Proof
•Let vj = jth vertex in the topological order
•We will show that d(vk) is set correctly

when vk is selected, for k = 1,2, …, |V|
•When k = 1,

vk = v1 = leftmost vertex
If it is the source, d(vk) = 0
If it is not the source, d(vk) = 1
 In both cases, d(vk) is correct (why?)

 Base case is correct

30

Proof (cont)
•Now, suppose the statement is true for

k = 1, 2, …, r-1
•Consider the vertex vr

•If there is no path from s to vr

 d(vr) = 1 is never changed

•Else, we shall use similar arguments as
proving the correctness of Dijkstra’s
algorithm …

31

•First, let vt be the vertex immediately
before vr in the shortest path from s to vr

 t r-1
 d(vr) is set correctly once vt is selected,

and the edge (vt,vr) is relaxed
 After that, d(vr) is fixed
 d(vr) is correct when vr is selected

Thus, the proof of inductive case completes

Proof (cont)

32

Performance
• DAG-Shortest-Path selects vertex

sequentially according to topological order
•no need to perform Extract-Min

•We can store the d values of the vertices
in a single array  Relax takes O(1) time

•Running Time:
•Topological sort : O(V + E) time
•O(V) select, O(E) Relax : O(V + E) time
 Total Time: O(V + E)

33

Handling Negative Weight Edges

•When a graph has negative weight edges,
shortest path may not be well-defined

v
4

8

11
-7

s

-7

What is the shortest
path from s to v?

E.g.,

34

Handling Negative Weight Edges
•The problem is due to the presence of a

cycle C, reachable by the source, whose
total weight is negative
 C is called a negative-weight cycle

•How to handle negative-weight edges ??
 if input graph is known to be a DAG,

DAG-Shortest-Path is still correct
 For the general case, we can use

Bellman-Ford algorithm

35

Bellman-Ford Algorithm
Bellman-Ford(G, s) // runs in O(VE) time

For each v, set d(v) = 1 ; Set d(s) = 0 ;
for (k = 1 to |V|-1)

Relax all edges in G in any order ;
/* check if s reaches a neg-weight cycle */
for each edge (u,v),

if (d(v) d(u) + weight(u,v))
return “something wrong !!”;

return d ;

36

Example 1

4

8

3 -7s

8

-2

10

Relax all

0

1

1

1

1 Relax all

Relax all
10

4

8

3 -7s

8

-2

100

1

1

4

8

3 -7s

8

-2

0

4

8

3 -7s

8

-2

100

1

4

8

4

7

14

7

0

11

37

Example 1

After the 4th Relax all

10

4

8

3 -7s

8

-2

0

4

7

0

10

After checking, we found that there is
nothing wrong  distances are correct

38

Example 2

4

8

3 -7s

8

-2

1

Relax all

0

1

1

1

1 Relax all

Relax all
1

4

8

3 -7s

8

-2

10

1

1

4

8

3 -7s

8

-2

0

4

8

3 -7s

8

-2

10

1

4

8

4

7

11

0

-7

2

39

Example 2

After the 4th Relax all

1

4

8

3 -7s

8

-2

0

-7

-8

-15

-6

After checking, we found that something
must be wrong  distances are incorrect

This edge shows
something must

be wrong …

40

Correctness (Part 1)
Theorem:

If the graph has no negative-weight cycle,
then for any vertex v with shortest path
from s consists of k edges, Bellman-Ford
sets d(v) to the correct value after the kth

Relax all (for any ordering of edges in each Relax all)

How to prove ? (By induction)

41

Corollary
Corollary: If there is no negative-weight

cycle, then when Bellman-Ford terminates,
d(v) d(u) + weight(u,v)

for all edge (u,v)

Proof: By previous theorem, d(u) and d(v)
are the length of shortest path from s to
u and v, respectively. Thus, we must have

d(v) length of any path from s to v
 d(v) d(u) + weight(u,v)

42

“Something Wrong”Lemma

Lemma: If there is a negative-weight cycle,
then when Bellman-Ford terminates,

d(v) d(u) + weight(u,v)
for some edge (u,v)

How to prove ? (By contradiction)

43

•Firstly, we know that there is a cycle
C = (v1, v2, …, vk, v1)

whose total weight is negative

•That is, i = 1 to k weight(vi, vi+1) 0

•Now, suppose on the contrary that
d(v) d(u) + weight(u,v)

for all edge (u,v) at termination

Proof

44

•Can we obtain another bound for

i = 1 to k weight(vi, vi+1) ?
•By rearranging, for all edge (u,v)

weight(u,v) d(v) - d(u)

 i = 1 to k weight(vi, vi+1)

i = 1 to k (d(vi) - d(vi+1)) = 0 (why?)

 Contradiction occurs !!

Proof (cont)

45

Correctness (Part 2)

Theorem:
There is a negative-weight cycle in the
input graph if and only if when Bellman-
Ford terminates,

d(v) d(u) + weight(u,v)
for some edge (u,v)

•Combining the previous corollary and
lemma, we have:

