CS4311 Design and Analysis of Algorithms

Lecture 25: Elementary Graph Algorithms IV

1

About this lecture

- Review of Strongly Connected Components (SCC) in a directed graph
- Finding all SCC
 - (i.e., decompose a directed graph into SCC)

Mutually Reachable

- Let G be a directed graph
- Let u and v be two vertices in G

Definition: If u can reach v (by a path) and v can reach u (by a path), then we say u and v are mutually reachable

We shall use the notation u ↔ v to indicate u and v are mutually reachable
Also, we assume u ↔ u for any node u

Mutually Reachable

Theorem: \leftrightarrow is an equivalence relation

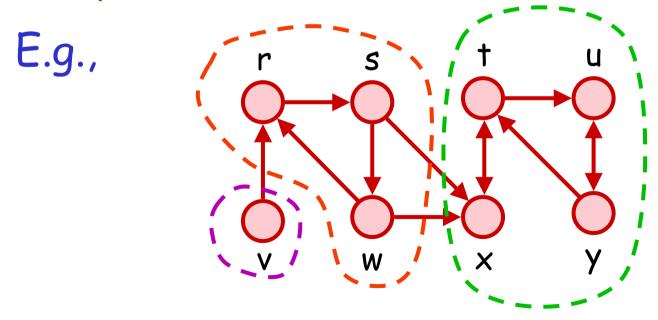
Proof:

- By assumption $u \leftrightarrow u$, so \leftrightarrow is reflexive
- If $u \leftrightarrow v$, then $v \leftrightarrow u$, so \leftrightarrow is symmetric
- Also, if $u \leftrightarrow v$ and $v \leftrightarrow w$, then $u \leftrightarrow w$, so \leftrightarrow is transitive

Thus, \leftrightarrow is an equivalence relation

Strongly Connected Components

- Thus, we can partition V based on \leftrightarrow
- Let $V_1, V_2, ..., V_k$ denote the partition
- Each V_i is called a strongly connected component (SCC) of G



Property of SCC

- Let G = (V, E) be a directed graph
- Let G^T be a graph obtained from G by reversing the direction of every edge in G

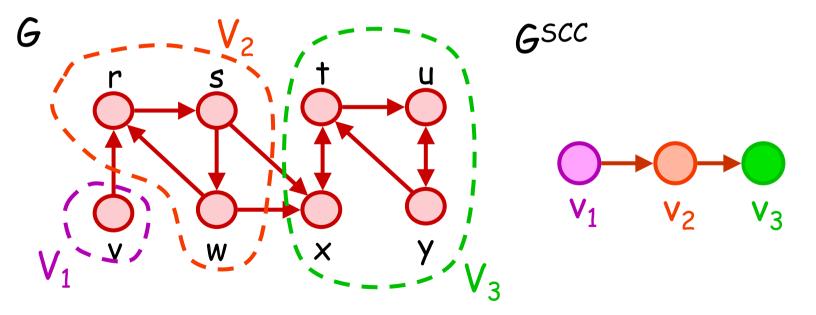
 \rightarrow Adjacency matrix of G^{T}

= transpose of adjacency matrix of G

Theorem: G and G^T has the same set of SCC 's

Property of SCC

- Let $V_1, V_2, ..., V_k$ denote SCC of a graph G
- Let G^{SCC} be a simple graph obtained by contracting each V_i into a single vertex v_i
 - We call G^{SCC} the component graph of G



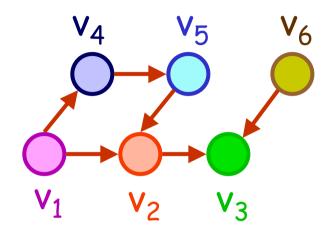
Property of G^{SCC}

Theorem: G^{SCC} is acyclic

Proof: (By contradiction) If G^{SCC} has a cycle, then there are some vertices v_i and v_j with $v_i \leftrightarrow v_j$ By definition, v_i and v_j correspond to two distinct SCC V_i and V_j in G. However, we see that any pair of vertices in V_i and V_j are mutually reachable \rightarrow contradiction

Property of G^{SCC}

 Suppose the DAG (directed acyclic graph) on the right side is the G^{SCC} of some graph G



- Now, suppose we perform DFS on G
 - let u = node with largest finishing time

Question: Which SCC can u be located?

Property of G^{SCC}

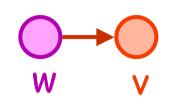
Lemma:

Consider any graph G. Let G^{SCC} be its component graph. Suppose v is a vertex in G^{SCC} with at least one incoming edge. Then, the node finishing last in any DFS of G cannot be a vertex of the SCC corresponding to v

Proof

Let SCC(v) = SCC
 corresponding to v

 Since v has incoming edge, there exists w such that (w,v) is an edge in G^{SCC}

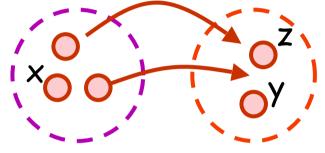


- In the next two slides, we shall show that some node in SCC(w) must finish later than any node in SCC(v)
 - Consequently, u cannot be in SCC(v)

Proof

Let x = 1st node in SCC(w) In discovered by DFS

Inside G



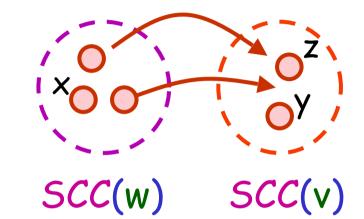
SCC(w) SC

Let z = last node in SCC(v) finished by DFS

// Note: z may be the same as y By white-path theorem, we must have $d(y) \le d(z) < f(z) \le f(y)$

Proof

- If d(x) < d(y)
- then y becomes x's descendant (by white-path)
 → f(z) ≤ f(y) < f(x)
- If d(y) < d(x)



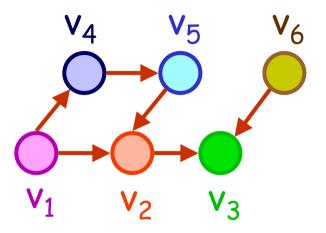
since x cannot be y's
 descendant (otherwise, they are in the same SCC)
 → d(y) < f(y) < d(x) < f(x)
 → f(z) ≤ f(y) < f(x)

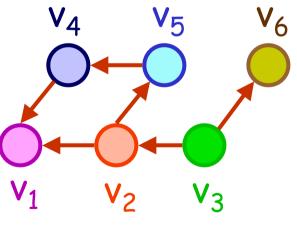
Finding SCC

- So, we know that u

 (last finished node of G) must
 be in an SCC with no
 incoming edges
- Let us reverse edge directions, and start DFS on G^{T} from u

Question: Who will be u's descendants ??

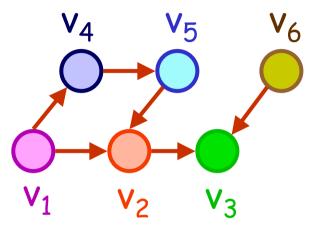


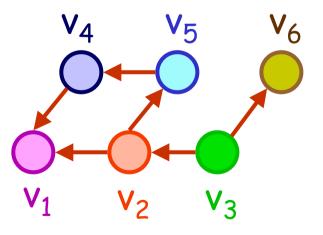


New G^{SCC}

Finding SCC

- Note that nodes in the SCC containing u cannot connect to nodes in other SCCs in G^{T}
- By white-path theorem, the descendants of u in G^{T} must be exactly those nodes in the same SCC as u





New G^{SCC}

Finding SCC

- Once DFS on u inside G^T has finished, all nodes in the same SCC as u are finished
 - → Any subsequent DFS in G^T will be made as if this SCC was removed from G^T
- Now, let u' be the remaining node in G^T whose finishing time (in DFS in G) is latest
 - Where can u' be located?
 - Who will be the descendents of u' if we perform DFS in G^T now?

- Our observations lead to the following algorithm for finding all SCCs of G :
 Finding-all-SCC(G) {
 - 1. Perform DFS on G;
 - 2. Construct G^{T} ;
 - 3. while (some node in G^{T} is undiscovered)
 - { u = undiscovered node with latest finishing time** ;

Perform DFS on G^{T} from u ;

} // nodes in the DFS tree from u forms an SCC

} // ** Finishing times always refer to Step 1's DFS

Correctness & Performance

- The correctness of the algorithm can be proven by induction
 - (Hint: Show that at each sub-search in Step 3, u is chosen from an SCC which has no outgoing edges to any nodes in an "unvisited" SCC of G^{T} .
 - → By white-path theorem, exactly all nodes in the same SCC become u's descendants)
- Running Time: O(|V|+|E|) (why?)