
1

CS4311
Design and Analysis of

Algorithms

Lecture 25:
Elementary Graph Algorithms IV

2

About this lecture

•Review of Strongly Connected Components
(SCC) in a directed graph

•Finding all SCC
(i.e., decompose a directed graph into SCC)

3

•Let G be a directed graph
•Let u and v be two vertices in G

Definition: If u can reach v (by a path) and v
can reach u (by a path), then we say u and v
are mutually reachable

We shall use the notation u  v to indicate
u and v are mutually reachable

Also, we assume u  u for any node u

Mutually Reachable

4

Mutually Reachable
Theorem:  is an equivalence relation

Proof:
•By assumption u  u, so  is reflexive
•If u  v , then v  u, so  is symmetric
•Also, if u  v and v  w, then u  w,

so  is transitive

Thus,  is an equivalence relation

5

Strongly Connected Components
•Thus, we can partition V based on 
•Let V1, V2, …, Vk denote the partition
•Each Vi is called a strongly connected

component (SCC) of G

E.g.,

v

r s

w x

t u

y

6

Property of SCC
•Let G = (V, E) be a directed graph
•Let GT be a graph obtained from G by

reversing the direction of every edge in G
 Adjacency matrix of GT

= transpose of adjacency matrix of G

Theorem:
G and GT has the same set of SCC ’s

7

Property of SCC
•Let V1, V2, …, Vk denote SCC of a graph G
•Let GSCC be a simple graph obtained by

contracting each Vi into a single vertex vi

•We call GSCC the component graph of G

v

r s

w x

t u

y

G

V1

V2

V3

GSCC

v1 v2 v3

8

Property of GSCC

Theorem: GSCC is acyclic

Proof: (By contradiction)
If GSCC has a cycle, then there are some
vertices vi and vj with vi  vj

By definition, vi and vj correspond to two
distinct SCC Vi and Vj in G . However, we
see that any pair of vertices in Vi and Vj
are mutually reachable  contradiction

9

Property of GSCC

•Suppose the DAG
(directed acyclic graph) on
the right side is the
GSCC of some graph G v1 v2 v3

v5v4 v6

•Now, suppose we perform DFS on G
• let u = node with largest finishing time

Question: Which SCC can u be located ?

10

Property of GSCC

Lemma:
Consider any graph G.
Let GSCC be its component graph.
Suppose v is a vertex in GSCC with at least
one incoming edge.
Then, the node finishing last in any DFS
of G cannot be a vertex of the SCC
corresponding to v

11

Proof
•Let SCC(v) = SCC

corresponding to v
•Since v has incoming edge,

there exists w such that
(w,v) is an edge in GSCC

Inside
GSCC

w v

•In the next two slides, we shall show
that some node in SCC(w) must finish
later than any node in SCC(v)
•Consequently, u cannot be in SCC(v)

12

Proof
Let x = 1st node in SCC(w)

discovered by DFS
Let y = 1st node in SCC(v)

discovered by DFS
Let z = last node in SCC(v)

finished by DFS
// Note: z may be the same as y

By white-path theorem, we must have
d(y) d(z) f(z) f(y)

Inside G

SCC(w) SCC(v)

x y

z

13

Proof
If d(x) d(y)
•then y becomes x’s

descendant (by white-path)

 f(z) f(y) f(x)
If d(y) d(x)
•since x cannot be y’s

descendant (otherwise, they are in the same SCC)

 d(y) f(y) d(x) f(x)
 f(z) f(y) f(x)

Inside G

SCC(w) SCC(v)

x y

z

14

Finding SCC
•So, we know that u

(last finished node of G) must
be in an SCC with no
incoming edges

•Let us reverse edge
directions, and start
DFS on GT from u

v1 v2 v3

v5v4 v6

Question: Who will be u’s
descendants ??

v1 v2 v3

v5v4 v6

New GSCC

15

Finding SCC
•Note that nodes in the

SCC containing u cannot
connect to nodes in
other SCCs in GT

•By white-path theorem,
the descendants of u in
GT must be exactly
those nodes in the same
SCC as u

v1 v2 v3

v5v4 v6

v1 v2 v3

v5v4 v6

New GSCC

16

Finding SCC
•Once DFS on u inside GT has finished, all

nodes in the same SCC as u are finished
 Any subsequent DFS in GT will be made

as if this SCC was removed from GT

•Now, let u’be the remaining node in GT

whose finishing time (in DFS in G) is latest
•Where can u’be located?
•Who will be the descendents of u’if we

perform DFS in GT now?

17

•Our observations lead to the following
algorithm for finding all SCCs of G :

Finding-all-SCC(G) {
1. Perform DFS on G ;
2. Construct GT ;
3. while (some node in GT is undiscovered)

{ u = undiscovered node with latest
finishing time** ;

Perform DFS on GT from u ;
} // nodes in the DFS tree from u forms an SCC

} // ** Finishing times always refer to Step 1’s DFS

18

Correctness & Performance
•The correctness of the algorithm can be

proven by induction
(Hint: Show that at each sub-search in Step 3,

u is chosen from an SCC which has no
outgoing edges to any nodes in an
“unvisited”SCC of GT.

 By white-path theorem, exactly all nodes
in the same SCC become u’s descendants)

•Running Time: O(|V|+|E|) (why?)

