CS4311

Design and Analysis of
Algorithms

Lecture 25:
Elementary Graph Algorithms IV

About this lecture

» Review of Strongly Connected Components
(SCC) in a directed graph

» Finding all SCC
(i.e., decompose a directed graph into SCC)

Mutually Reachable

* Let G be a directed graph
+ Let uand v be two vertices in G

Definition: If u can reach v (by a path) and v
can reach u (by a path), then we say u and v
are mutually reachable

We shall use the notation u <> v to indicate
u and v are mutually reachable

Also, we assume u <> u for any node u

Mutually Reachable

Theorem: <> is an equivalence relation

Proof:
By assumption u <> u, so <> is reflexive
+ Ifuo v, thenv < u, so <> is symmetric

Also, ifueo vand v o w, thenu o w,
So <> 1s transitive

Thus, <> is an equivalence relation

Strongly Connected Components

» Thus, we can partition V based on <
+ Let V,, V,, .., V, denote the partition

» Each V. is called a strongly connected
component (SCC) of G

Property of SCC

+ Let 6 = (V, E) be a directed graph

* Let G be a graph obtained from G by
reversing the direction of every edge in G

=> Adjacency matrix of GT
= transpose of adjacency matrix of G

Theorem:
G and G has the same set of SCC 's

Property of SCC

+ Let V,, V,, .., V, denote SCC of a graph G

+ Let 6°¢¢ be a simple graph obtained by
contracting each V. into a single vertex v.

+ We call 6°¢¢ the component graph of G

v2 PRl GSccC

’———~

Property of G>¢¢
Theorem: G°>¢Cis acyclic

Proof: (By contradiction)

If G°°¢ has a cycle, then there are some
vertices v, and Vv, with v. & Vv,

By definition, v, and v; correspond to two
distinct SCC V., and V in G . However, we
see that any pair of vertices in Vi and V;
are mutually reachable = contradiction

Property of G>¢¢
+ Suppose the DAG Vo V5 Ve
(directed acyclic graph) on
the right side is the
G°Cof somegraph & v, v, v,

* Now, suppose we perform DFS on G
* let u = node with largest finishing time

Question: Which SCC can u be located ?

Property of G>¢¢

Lemma:
Consider any graph 6.
Let G°¢¢ be its component graph.

Suppose v is a vertex in G°¢¢ with at least
one incoming edge.

Then, the node finishing last in any DFS
of G cannot be a vertex of the SCC
corresponding to v

10

Proof

+ Let SCC(v) = SCC Inside

corresponding to v GocC

+ Since v has incoming edge, O—0
there exists w such that Y
(w,v) is an edge in G>¢¢

» In the next two slides, we shall show

that some node in SCC(w) must finish
later than any node in SCC(v)

» Consequently, u cannot be in SCC(v)

11

Proof

Let x = 1st node in SCC(w) Inside G
discovered by DFS /E)m =5

Z\
Let y = 1st node in SCC(v) 'Xo O//)’(\\é)y !

discovered by DFS ~._-" ~__~
Let z = last node in SCC(v) SCC(w) SCC(v)
finished by DFS

// Note: z may be the same as 'y
By white-path theorem, we must have

d(y) <d(z) < f(z) < f(y)

12

Proof

If d(x) < d(y) Inside G

* theny becomes x's =T T
descendant (by white-path) (xg O/;f(\»é)y |
2> f(z) < f(y) < f(x) AR

If d(y) < d(x) SCC(w) SCC(v)

* since x cannot be y's
descendant (otherwise, they are in the same SCC)
2> d(y) < f(y) < d(x) < f(x)
2 f(z) < f(y) < f(x)

13

Finding SCC

So, we know that u
(last finished node of 6) MusT
be in an SCC with no
incoming edges

* Let us reverse edge

directions, and start
DFS on G™ from u

Question: Who will be u's
descendants ??

- Note that nodes in the V4 V5 Vg

Finding SCC

SCC containing u cannot
connect to nodes in

other SCCs in G' ViV, Vs

By white-path theorem, v, v v

the descendants of u in <
G" must be exactly <A
those nodes in the same y
1 Vo V3
SCCas u

15

Finding SCC

- Once DFS on u inside G" has finished, all

nodes in the same SCC as u are finished

=> Any subsequent DFS in 6T will be made
as if this SCC was removed from G'

* Now, let u' be the remaining node in G7
whose finishing time (in DFsin 6) is latest

- Where can u' be located?

- Who will be the descendents of U if we
perform DFS in GT how?

16

Our observations lead to the following
algorithm for finding all SCCs of G :

Finding-all-SCC(6G) {
1. Perform DFSon G ;
2. Construct GT;
3. while (some node in GT is undiscovered)
{ u=undiscovered node with latest
finishing time** ;
Perform DFSon G™ fromu ;
} // nodes in the DFS tree from u forms an SCC
} 7/ ** Finishing times always refer to Step 1's DFS

17

Correctness & Performance

The correctness of the algorithm can be
proven by induction

(Hint: Show that at each sub-search in Step 3,
u is chosen from an SCC which has no

outgoing edges to any nodes in an
“unvisited" SCC of G'.

= By white-path theorem, exactly all nodes
in the same SCC become u's descendants)

Running Time: O(|V|+|E|) (why?)

18

