
1

CS4311
Design and Analysis of

Algorithms

Lecture 24:
Elementary Graph Algorithms III



2

About this lecture
•Depth First Search

•Classification of Tree Edges

•Topological Sort



3

Classification of Tree Edges
•After a DFS process, we can classify the

edges of a graph into four types :
1. Tree : Edges in the DFS forest
2. Back : From descendant to ancestor

when explored (include self loop)

3. Forward : From ancestor to descendant
when explored (exclude tree edge)

4. Cross : Others (no ancestor-descendant relation)



4

Example

v

r s

w x

t u

y

Suppose the input graph is directed



5

Example

v

r s

w x

t u

y

Suppose this is the DFS forest obtained

Can you classify the type of each edge ?

B F C
CC



6

Example

v

r s

w x

t u

y

Suppose the DFS forest is different now …

Can you classify the type of each edge ?

B

C

C
CC



7

Example

v

r s

w x

t u

y

Suppose the input graph is undirected



8

Example

v

r s

w x

t u

y

Suppose this is the DFS forest obtained

Can you classify the type of each edge ?

B B



9

Edges in Undirected Graph
Theorem:

After DFS of an undirected graph, every
edge is either a tree edge or a back edge

Proof: Let (u,v) be an edge. Suppose u is
discovered first. Then, v will become u’s
descendent (white-path) so that f(v) f(u)

•If u discovers v  (u,v) is tree edge
•Else, (u,v) is explored after v discovered

Then, (u,v) must be explored from v
because f(v) f(u)  (u,v) is back edge



10

Cycles in Directed Graph
Theorem: For any DFS on a directed graph G,

there is a back edge G has a cycle

Proof:
() If there is a back edge

(u,v), it implies there is
a path from v to u.
Thus, this back edge
completes a cycle

B



11

Proof
() If G has a cycle C, let

v = first vertex discovered in DFS
(u,v) = v’s preceding edge in C

Thus, when v is discovered, all nodes in C
are still undiscovered (white)
 v is ancestor of u in DFS forest (why?)

 (u,v) becomes a back edge



12

Topological Sort
•Directed graph can be used to indicate

precedence among a set of events
•E.g., a possible precedence is dressing

under-shorts

pants

belt

shirt

tie

socks

shoes
watch

jacket



13

Topological Sort
•The previous directed graph is also called

a precedence graph

Question: Given a precedence graph G,
can we order the events such that
if (u,v) is in G (i.e. u should complete before v )

then u appears before v in the ordering ?

We call this problem topological sorting of G



14

Topological Sort

Fact: If G contains a cycle, then it is
impossible to find a desired ordering
(Prove by contradiction)

•However, if G is acyclic (not contains any cycle)
we show that the algorithm in next slide
always find one of the desired ordering



15

Topological Sort

Topological-Sort(G)
{

1. Call DFS on G
2. If G contains a back edge, abort ;
3. Else, output vertices in decreasing

order of their finishing times ;
}

Why is the algorithm correct?



16

Topological Sort
Theorem:

If G is acyclic, the previous algorithm
produces a topological sort of G

Proof: Let (u,v) be an edge in G. We shall
show that f(u) f(v) so that u appears
before v in the output ordering

Recall G is acyclic, there is no back edges.
There are two main cases …



17

Proof
•Case 1: (u,v) is a tree or forward edge
 u is an ancestor of v
 d(u) d(v) f(v) f(u) (why??)

•Case 2: (u,v) is a cross edge
 d(v) d(u) (otherwise, by white-path, u must be
an ancestor of v, so that (u,v) cannot be a cross edge)

 Since G is acyclic, v cannot reach u, so
d(v) f(v) d(u) f(u) (why??)

•Both cases show f(u) f(v)  Done !



18

under-shorts

pants

belt

shirt

tie

socks

shoes
watch

jacket

Discovery and Finishing Times
after a possible DFS

1/8

2/5

3/4

6/7

11/14

12/13

9/10

15/18

16/17

Topological Sort (Example)



19

under-shorts

pants

belt

shirt

tie

socks

shoes
watch

jacket

Ordering Finishing Times
(in descending order)

6

8

9

7

3

4

5

1

2

If we order the events from left to right,
anything special about the edge directions ?



20

Performance
•Let G = (V,E) be the input directed graph
•Running time for Topological-Sort :

1. Perform DFS : O(|V|+|E|) time
2. Sort finishing times

Naïve method: O(|V| log |V|) time
Clever method: (use an extra stack S)

During DFS, push a node into stack S
once finished  no need to sort !!

•Total time: O(|V|+|E|)


