CS4311 Design and Analysis of Algorithms

Lecture 24: Elementary Graph Algorithms III

1

About this lecture

- Depth First Search
 - Classification of Tree Edges
- Topological Sort

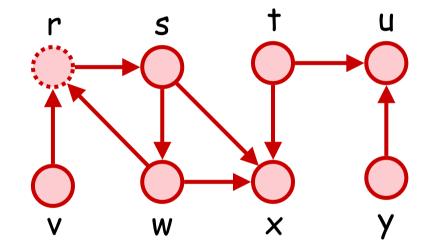
Classification of Tree Edges

- After a DFS process, we can classify the edges of a graph into four types :
 - 1. Tree : Edges in the DFS forest
 - 2. Back : From descendant to ancestor when explored (include self loop)
 - 3. Forward : From ancestor to descendant when explored (exclude tree edge)

4. Cross: Others (no ancestor-descendant relation)

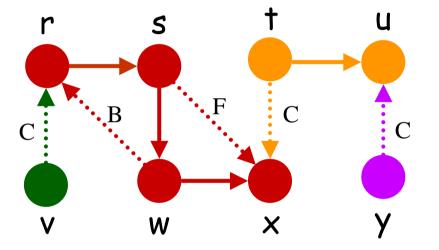
Example

Suppose the input graph is directed



Example

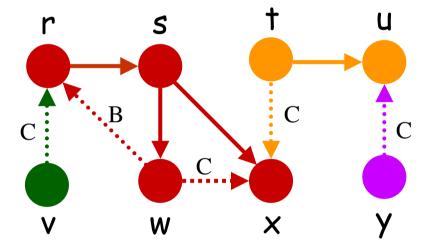
Suppose this is the DFS forest obtained



Can you classify the type of each edge?

Example

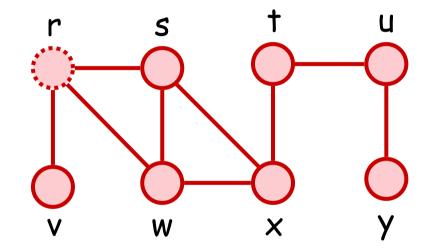
Suppose the DFS forest is different now ...



Can you classify the type of each edge?

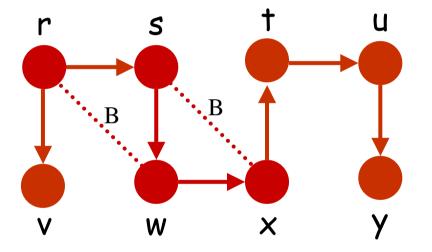
Example

Suppose the input graph is undirected



Example

Suppose this is the DFS forest obtained



Can you classify the type of each edge?

Edges in Undirected Graph

Theorem:

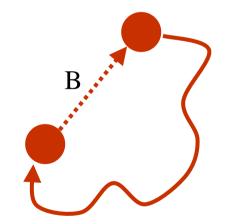
After DFS of an undirected graph, every edge is either a tree edge or a back edge

- Proof: Let (u,v) be an edge. Suppose u is discovered first. Then, v will become u's descendent (white-path) so that f(v) < f(u)
- If u discovers $v \rightarrow (u,v)$ is tree edge
- Else, (u,v) is explored after v discovered Then, (u,v) must be explored from v because f(v) < f(u) → (u,v) is back edge 9

Cycles in Directed Graph

Theorem: For any DFS on a directed graph G, there is a back edge \Leftrightarrow G has a cycle

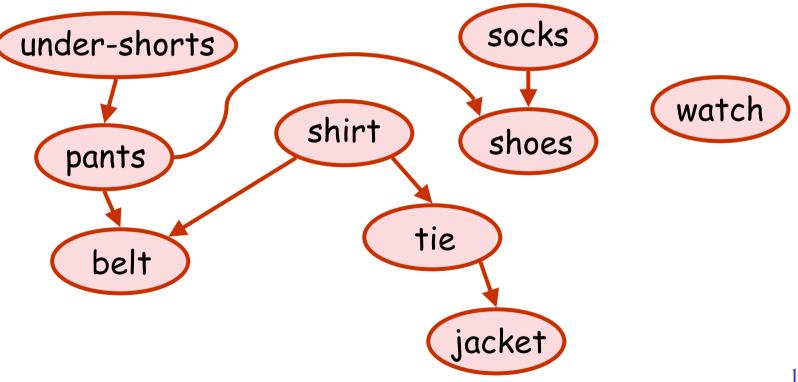
Proof: (⇒) If there is a back edge (u,v), it implies there is a path from v to u. Thus, this back edge completes a cycle



Proof

- (\Leftarrow) If G has a cycle C, let
 - v = first vertex discovered in DFS
 (u,v) = v's preceding edge in C
 - Thus, when v is discovered, all nodes in C are still undiscovered (white)
 - → v is ancestor of u in DFS forest (why?)
 - → (u,v) becomes a back edge

- Directed graph can be used to indicate precedence among a set of events
- E.g., a possible precedence is dressing



 The previous directed graph is also called a precedence graph

Question: Given a precedence graph G, can we order the events such that if (u,v) is in G (i.e. u should complete before v) then u appears before v in the ordering?

We call this problem topological sorting of G

- Fact: If G contains a cycle, then it is impossible to find a desired ordering (Prove by contradiction)
- However, if G is acyclic (not contains any cycle) we show that the algorithm in next slide always find one of the desired ordering

```
Topological-Sort(G)
{
1. Call DFS on G
2. If G contains a back edge, abort ;
3. Else, output vertices in decreasing
order of their finishing times ;
```

Why is the algorithm correct?

Theorem:

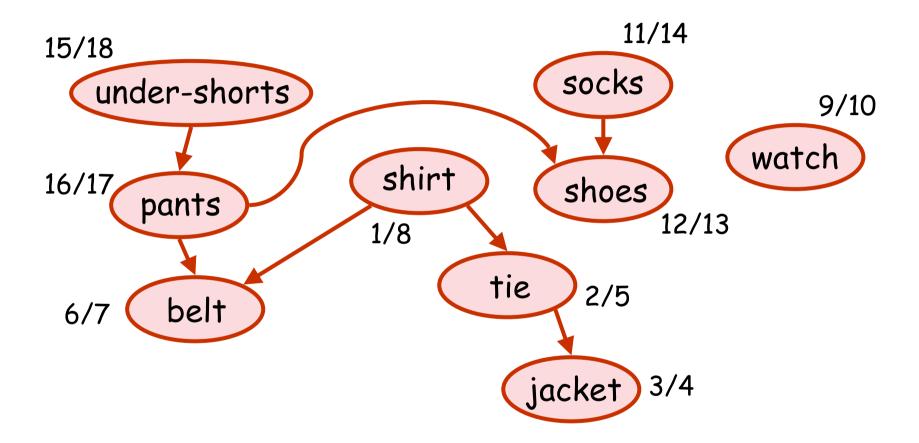
If G is acyclic, the previous algorithm produces a topological sort of G

Proof: Let (u,v) be an edge in G. We shall show that f(u) > f(v) so that u appears before v in the output ordering Recall G is acyclic, there is no back edges. There are two main cases ...

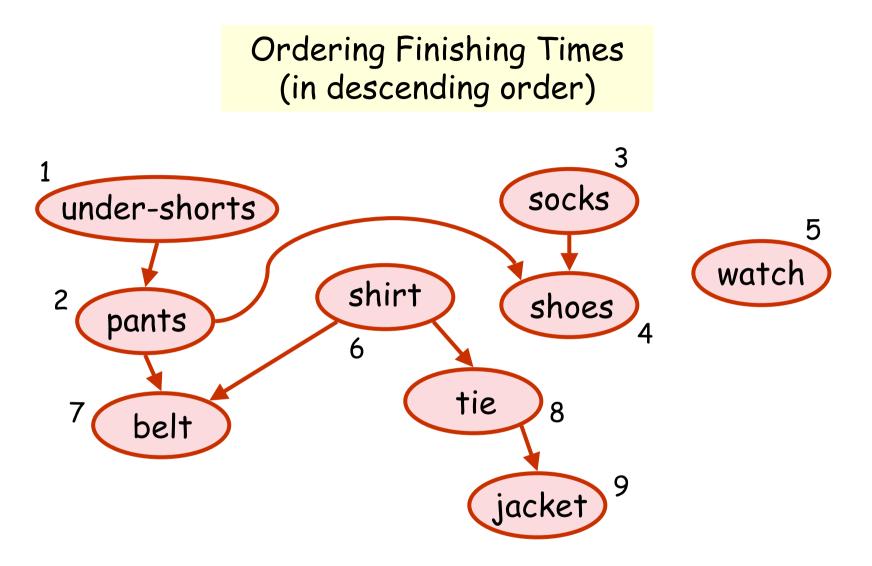
Proof

• Case 1: (u,v) is a tree or forward edge \rightarrow u is an ancestor of v $\Rightarrow d(u) < d(v) < f(v) < f(u) \qquad (why??)$ • Case 2: (u,v) is a cross edge \rightarrow d(v) < d(u) (otherwise, by white-path, u must be an ancestor of v, so that (u,v) cannot be a cross edge) → Since G is acyclic, v cannot reach u, so d(v) < f(v) < d(u) < f(u) (why??) • Both cases show $f(u) > f(v) \rightarrow Done!$

Topological Sort (Example)



Discovery and Finishing Times after a possible DFS



If we order the events from left to right, anything special about the edge directions?

Performance

- Let G = (V,E) be the input directed graph
- Running time for Topological-Sort :
 - 1. Perform DFS : O(|V|+|E|) time
 - 2. Sort finishing times Naïve method: O(|V| log |V|) time Clever method: (use an extra stack S) During DFS, push a node into stack S once finished → no need to sort !!
- Total time: O(|V|+|E|)