CS4311
Design and Analysis of Algorithms

Lecture 21:
Data Structures for Disjoint Sets II
About this lecture

- Data Structure for Disjoint Sets
 - Support Union and Find operations

- Various Methods:
 1. Linked List
 2. Union by Size (this lecture)
 3. Union by Rank
 4. Union by Rank + Path Compression
Disjoint-Set Forest

• Another popular method to maintain disjoint sets is by a forest
 • Each set \Leftrightarrow a separate rooted tree
 • Representative \Leftrightarrow root of tree
• Unlike the linked lists implementation, each element now points only to its parent (and does not directly point to the representative)
Example

Current dynamic sets: \{ \{a, b, c, d\}, \{e, f, g\}, \{h\} \}
Disjoint-Set Forest

- To perform $\text{Union}(x, y)$, we join the trees containing x and containing y, by linking their roots.
- E.g. $\text{Union}(f, h)$ in previous example gives:
Disjoint-Set Forest

- Let $H_{\text{max}} = \text{max height of all trees}$
- In the worst-case:

 \[\text{Make-Set} : \quad \Theta(1) \text{ time} \]
 \[\text{Find or Union} : \quad O(H_{\text{max}}) \text{ time} \]

$\Rightarrow \ m \text{ operations on } n \text{ elements :}
\]
 \[\text{worst-case } \Theta(mn) \text{ time} \]
Union By Size

- Let us apply a union-by-size heuristic:

To perform Union, we link root of the smaller tree to root of the larger tree

\[H_{\text{max}} = O(\log n) \quad \text{(how to prove??)} \]

\[m \text{ operations : } \Theta(m \log n) \text{ time} \]
Union By Rank

- A similar heuristic is called union-by-rank
- Each node keeps track of its rank – an upper bound on the height of the node
 - In a single-node tree (created by Make-Set)
 \[\text{rank of root} = 0 \]

To perform Union, we link root with smaller rank to root with larger rank
Union By Rank

• Rank needs not be very accurate
 • as long as it always gives an upper bound of height is enough

• When Union is performed, only the rank of the roots may change:
 • If both roots have same rank ➔ rank of new root increases by 1
 • Else, no change
Example

Before Union

After Union(c,f)

\[? = \text{rank} \]
Union By Rank

• Let $H_{\text{max}} = \text{max height of all trees}$

 $\Rightarrow H_{\text{max}} = O(\log n)$ (how to prove??)

 $\Rightarrow m$ operations : $\Theta(m \log n)$ time

• So, union by rank is no better than union by size, but ...
Path Compression

• The closer a node to its root, the faster the Find or Union operation

• When we perform Find(x), we will need to find the root of the tree containing x
 ➔ will access every ancestor of x

• why don’t we make all these ancestors of x closer to the root now?
 (Because no increase in asymptotic performance !!!)
Example

Before Find(x)

After Find(x)
Union by Rank + Path Compression

- With path compression, the more `Find` we have, the better its average performance.

Fact: In the worst-case, `m` operations with `f` `Find` runs in $\Theta(m + f \log_{2+f/n} n)$ time.

\Rightarrow still no improvement in worst-case.

- Interestingly, by combining union-by-rank (at `Union`) and path compression (at `Find`)

 m operations: $\Theta(m \alpha(n))$ time

Inverse Ackermann (in practice, at most 4)
Finding Connected Components

- Recall: To find connected components of a graph G with n vertices and m edges
 - there are n Make-Set and m Find or Union operations

- Which scheme for dynamic disjoint sets gives the best running time (theoretically)\
 Ans. Depends on m (why?)