CS4311
Design and Analysis of Algorithms

Lecture 2: Growth of Function
About this lecture

• Introduce Asymptotic Notation
 - $\Theta()$, $\Omega()$, $\Omega()$, $o()$, $\omega()$
Recall that for input size n,

- **Insertion Sort**’s running time is:

 $$An^2 + Bn + C,$$
 \[(A,B,C \text{ are constants}) \]

- **Merge Sort**’s running time is:

 $$Dn \log n + En + F,$$
 \[(D,E,F \text{ are constants}) \]

- To compare their running times for large n, we can in fact just focus on the dominating term (the term that grows fastest when n increases)

 - That is, An^2 vs $Dn \log n$
If we look more closely, the leading constants in the dominating term does not affect much in this comparison.

- That is, we may as well compare n^2 vs $n \log n$ (instead of An^2 vs $Dn \log n$).

As a result, we conclude that Merge Sort is better than Insertion Sort when n is sufficiently large.
Asymptotic Efficiency

• In the previous comparison, we are studying the asymptotic efficiency of the two sorting algorithms
 - That is, what happens if the input size can increase without bound?

• If algorithm P is asymptotically faster than algorithm Q, P is often a better choice

• To aid (and simplify) our study in the asymptotic efficiency, we now introduce some useful asymptotic notation
Big-O notation

Definition: Given a function $g(n)$, we denote $O(g(n))$ to be the set of functions

$$\{ f(n) \mid \text{there exists positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq c g(n) \text{ for all } n \geq n_0 \}$$

Meaning: Those functions which can be upper bounded by a constant times of $g(n)$ for large n
Big-O notation (example)

• $4n \in O(5n)$ [proof: $c = 1$, $n \geq 1$]
• $4n \in O(n)$ [proof: $c = 4$, $n \geq 1$]
• $4n + 3 \in O(n)$ [proof: $c = 5$, $n \geq 3$]
• $n \in O(0.001n^2)$ [proof: $c = 1$, $n \geq 100$]
• $\log_e n \in O(\log n)$ [proof: $c = 1$, $n \geq 1$]
• $\log n \in O(\log_e n)$ [proof: $c = \log e$, $n \geq 1$]

Remark: Usually, we will slightly abuse the notation, and write $f(n) = O(g(n))$ to mean $f(n) \in O(g(n))$
Big-Omega notation

Definition: Given a function $g(n)$, we denote $\Omega(g(n))$ to be the set of functions

$$\left\{ f(n) \mid \text{there exists positive constants } c \text{ and } n_0 \text{ such that } 0 \leq c g(n) \leq f(n) \right.$$ \hspace{1cm} for all $n \geq n_0$$

Meaning: Those functions which can be lower bounded by a constant times of $g(n)$ for large n.

Big-O and Big-Omega

• Similar to Big-O, we will slightly abuse the notation, and write $f(n) = \Omega(g(n))$ to mean $f(n) \in \Omega(g(n))$

Relationship between Big-O and Big-Ω:

$f(n) = \Omega(g(n)) \iff g(n) = O(f(n))$
Big-Ω notation (example)

- $5n = \Omega(4n)$ [proof: $c = 1$, $n \geq 1$]
- $n = \Omega(4n)$ [proof: $c = 1/4$, $n \geq 1$]
- $4n + 3 = \Omega(n)$ [proof: $c = 1$, $n \geq 1$]
- $0.001n^2 = \Omega(n)$ [proof: $c = 1$, $n \geq 100$]
- $\log_e n = \Omega(\log n)$ [proof: $c = 1/\log e$, $n \geq 1$]
- $\log n = \Omega(\log_e n)$ [proof: $c = 1$, $n \geq 1$]
Θ notation (Big-O ∩ Big-Ω)

Definition: Given a function $g(n)$, we denote $Θ(g(n))$ to be the set of functions

$$\{ f(n) \mid \text{there exists positive constants } c_1, c_2, \text{ and } n_0 \text{ such that}$$

$$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$$

for all $n \geq n_0 \}$$

Meaning: Those functions which can be both upper bounded and lower bounded by $g(n)$ for large n
Big-O, Big-Ω, and Θ

• Similarly, we write \(f(n) = \Theta(g(n)) \) to mean \(f(n) \in \Theta(g(n)) \)

Relationship between Big-O, Big-Ω, and Θ:

\[
f(n) = \Theta(g(n)) \iff f(n) = \Omega(g(n)) \text{ and } f(n) = O(g(n))
\]
\(\Theta \) notation (example)

- \(4n = \Theta(n) \) \quad [c_1 = 1, c_2 = 4, n \geq 1]\)
- \(4n + 3 = \Theta(n) \) \quad [c_1 = 1, c_2 = 5, n \geq 3]\)
- \(\log_e n = \Theta(\log n) \) \quad [c_1 = 1/\log e, c_2 = 1, n \geq 1]\)

- Running Time of Insertion Sort = \(\Theta(n^2) \)
 - If not specified, running time refers to the worst-case running time
- Running Time of Merge Sort = \(\Theta(n \log n) \)
Little-o notation

Definition: Given a function $g(n)$, we denote $o(g(n))$ to be the set of functions

\[\{ f(n) \mid \text{for any positive } c, \text{ there exists a positive constant } n_0 \text{ such that } 0 \leq f(n) < c \cdot g(n) \text{ for all } n \geq n_0 \} \]

Note the similarities and differences with the Big-O definition.
Little-o (equivalent definition)

Definition: Given a function \(g(n) \), \(o(g(n)) \) is the set of functions

\[
\{ f(n) \mid \lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = 0 \}
\]

Examples:

- \(4n = o(n^2) \)
- \(n \log n = o(n^{1.000001}) \)
- \(n \log n = o(n \log^2 n) \)
Little-omega notation

Definition: Given a function \(g(n) \), we denote \(\omega(g(n)) \) to be the set of functions

\[\{ f(n) | \text{for any positive } c, \text{ there exists positive constant } n_0 \text{ such that } 0 \leq c \cdot g(n) < f(n) \text{ for all } n \geq n_0 \} \]

Note the similarities and differences with the Big-Omega definition.
Little-omega (equivalent definition)

Definition: Given a function $g(n)$, $\omega(g(n))$ is the set of functions

$$\{ f(n) \mid \lim_{n \to \infty} \left(\frac{g(n)}{f(n)} \right) = 0 \}$$

Relationship between Little-o and Little-\(\omega\):

$$f(n) = \omega(g(n)) \iff g(n) = o(f(n))$$
To remember the notation:

- **O** is like \(\leq \): \(f(n) = O(g(n)) \) means \(f(n) \leq cg(n) \)

 - And it is possible to have \(g(n) = O(f(n)) \)

- **o** is like \(< \): \(f(n) = o(g(n)) \) means \(f(n) < cg(n) \)

 - And it is not possible to have \(g(n) = o(f(n)) \)

Similarly,

- **\(\Omega \)** is like \(\geq \): \(f(n) = \Omega(g(n)) \) means \(f(n) \geq cg(n) \)

- **\(\omega \)** is like \(> \): \(f(n) = \Omega(g(n)) \) means \(f(n) > cg(n) \)

Finally,

- **\(\Theta \)** is like \(= \): \(f(n) = \Theta(g(n)) \) \iff \(g(n) = \Theta(f(n)) \)

Note: Not any two functions can be compared asymptotically.
What’s wrong with it?

Your friend, after this lecture, has tried to prove $1+2+\ldots+n = O(n)$

• His proof is by induction:
• First, $1 = O(n)$
• Assume $1+2+\ldots+k = O(n)$
• Then, $1+2+\ldots+k+(k+1) = O(n) + (k+1)$

 $= O(n) + O(n) = O(2n) = O(n)$

So, $1+2+\ldots+n = + O(n)$ [where is the bug??]