CS4311 Design and Analysis of Algorithms

Lecture 2: Growth of Function

1

About this lecture

- Introduce Asymptotic Notation
 - Θ(), O(), Ω(), o(), ω()

Dominating Term

Recall that for input size n,

- Insertion Sort's running time is: $An^2 + Bn + C$, (A,B,C are constants)
- Merge Sort 's running time is:
 Dn log n + En + F, (D,E,F are constants)
- To compare their running times for large n, we can in fact just focus on the dominating term (the term that grows fastest when n increases)
 - That is, An² vs Dn log n

Dominating Term

- If we look more closely, the leading constants in the dominating term does not affect much in this comparison
 - That is, we may as well compare $n^2 vs n \log n$ (instead of $An^2 vs$ Dn log n)
- As a result, we conclude that Merge Sort is better than Insertion Sort when n is sufficiently large

Asymptotic Efficiency

- In the previous comparison, we are studying the asymptotic efficiency of the two sorting algorithms
 - That is, what happens if the input size can increase without bound?
- If algorithm P is asymptotically faster than algorithm Q, P is often a better choice
- To aid (and simplify) our study in the asymptotic efficiency, we now introduce some useful asymptotic notation

Big-O notation

Definition: Given a function g(n), we denote O(g(n)) to be the set of functions

 $\left\{ \begin{array}{l} f(n) \mid \text{ there exists positive constants} \\ c \text{ and } n_0 \text{ such that} \\ 0 \leq f(n) \leq c g(n) \\ \text{ for all } n \geq n_0 \end{array} \right\}$

Meaning: Those functions which can be upper bounded by a constant times of g(n) for large n

Big-O notation (example)

- $4n \in O(5n)$ [proof: c = 1, n \geq 1]
- $4n \in O(n)$ [proof: c = 4, n \geq 1]
- $4n + 3 \in O(n)$ [proof: c = 5, n \geq 3]
- $n \in O(0.001n^2)$ [proof: c = 1, n ≥ 100]
- $\log_e n \in O(\log n)$ [proof: c = 1, n \geq 1]
- · log $n \in O(log_e n)$ [proof: c = log e, n ≥ 1]

Remark: Usually, we will slightly abuse the notation, and write f(n) = O(g(n)) to mean $f(n) \in O(g(n))$

Big-Omega notation

Definition: Given a function g(n), we denote $\Omega(g(n))$ to be the set of functions

 $\left\{ \begin{array}{l} f(n) \mid \text{ there exists positive constants} \\ c \text{ and } n_0 \text{ such that} \\ 0 \leq c \, g(n) \leq f(n) \\ \text{ for all } n \geq n_0 \end{array} \right\}$

Meaning: Those functions which can be lower bounded by a constant times of g(n) for large n

Big-O and Big-Omega

• Similar to Big-O, we will slightly abuse the notation, and write $f(n) = \Omega(g(n))$ to mean $f(n) \in \Omega(g(n))$

Relationship between Big-O and Big- Ω : f(n) = $\Omega(g(n)) \Leftrightarrow g(n) = O(f(n))$

Big- Ω **notation** (example)

- $5n = \Omega(4n)$
- n = $\Omega(4n)$

- [proof: c = 1, n ≥ 1]
- [proof: $c = 1/4, n \ge 1$]
- $4n + 3 = \Omega(n)$ [proof: $c = 1, n \ge 1$]
- $0.001n^2 = \Omega(n)$ [proof: c = 1, n ≥ 100]
- $\log_e n = \Omega(\log n)$ [proof: $c = 1/\log e, n \ge 1$]
- log n = $\Omega(\log_e n)$ [proof: c = 1, n \geq 1]

Θ notation (Big-O \cap Big- Ω)

Definition: Given a function g(n), we denote $\Theta(g(n))$ to be the set of functions

 $\left\{ \begin{array}{l} f(n) \mid \text{ there exists positive constants} \\ c_1, c_2, \text{ and } n_0 \text{ such that} \\ 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \\ \text{ for all } n \geq n_0 \end{array} \right\}$

Meaning: Those functions which can be both upper bounded and lower bounded by of g(n) for large n

Big-O, Big- Ω , and Θ

• Similarly, we write $f(n) = \Theta(g(n))$ to mean $f(n) \in \Theta(g(n))$

Relationship between Big-O, Big- Ω , and Θ : $f(n) = \Theta(g(n))$ \Leftrightarrow $f(n) = \Omega(g(n))$ and f(n) = O(g(n))

Θ notation (example)

- $4n = \Theta(n)$ [$c_1 = 1, c_2 = 4, n \ge 1$]
- $4n + 3 = \Theta(n)$ [$c_1 = 1, c_2 = 5, n \ge 3$]
- $\log_e n = \Theta(\log n)$ [$c_1 = 1/\log e, c_2 = 1, n \ge 1$]
- Running Time of Insertion Sort = $\Theta(n^2)$
 - If not specified, running time refers to the worst-case running time
- Running Time of Merge Sort = $\Theta(n \log n)$

Little-o notation

Definition: Given a function g(n), we denote o(g(n)) to be the set of functions

{ f(n) for any positive c, there exists positive constant n_0 such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$ }

Note the similarities and differences with the Big-O definition

Little-o (equivalent definition)

Definition: Given a function g(n), o(g(n)) is the set of functions

 $\{f(n) \mid \lim_{n\to\infty} (f(n)/g(n)) = 0\}$

Examples:

- $4n = o(n^2)$
- $n \log n = o(n^{1.000001})$
- $n \log n = o(n \log^2 n)$

Little-omega notation

Definition: Given a function g(n), we denote $\omega(g(n))$ to be the set of functions

{ f(n) for any positive c, there exists positive constant n_0 such that $0 \le c g(n) < f(n)$ for all $n \ge n_0$ }

Note the similarities and differences with the Big-Omega definition

Little-omega (equivalent definition)

Definition: Given a function g(n), $\omega(g(n))$ is the set of functions

$$\left\{ f(n) \mid \lim_{n \to \infty} \left(\frac{g(n)}{f(n)} \right) = 0 \right\}$$

Relationship between Little-o and Little- ω : f(n) = $\omega(g(n)) \Leftrightarrow g(n) = o(f(n))$

To remember the notation:

- O is like \leq : f(n) = O(g(n)) means f(n) \leq cg(n)
 - And it is possible to have g(n) = O(f(n))
- o is like <: f(n) = o(g(n)) means f(n) < cg(n)

- And it is not possible to have g(n) = o(f(n))Similarly,

- Ω is like \geq : f(n) = $\Omega(g(n))$ means f(n) \geq cg(n)
- ω is like >: f(n) = O(g(n)) means f(n) > cg(n)

Finally,

• Θ is like =: $f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$

Note: Not any two functions can be compared asymptotically

What's wrong with it?

- Your friend, after this lecture, has tried to prove 1+2+...+ n = O(n)
- His proof is by induction:
- First, 1 = O(n)
- Assume 1+2+...+k = O(n)
- Then, 1+2+...+k+(k+1) = O(n) + (k+1)
 = O(n) + O(n) = O(2n) = O(n)
 So, 1+2+...+n = + O(n) [where is the bug??]