
1

CS4311
Design and Analysis of

Algorithms

Lecture 19: Fibonacci Heap II

2

About this lecture

•Decrease-Key & Delete in Fibonacci Heap
 Based on cutting some node from its

parent, and a simple rule which decides
if further cuts are needed

•Bounding MaxDeg(n)

3

Rule of Further Cuts
•Let x be a node with a parent node y,

such that at some time, x was a root and
was then linked to y

The rule is as follows:

After the above linking event,
as soon as x has lost its second child,
we cut x from y, making it a new root

4

Rule of Further Cuts
•To help us keep track of the status of

each node, we use marking in a node !!!
•we mark a non-root node x if it has

lost the first child
 If a non-root marked node loses a

child, it is cut from its parent
•we unmark a node x if

(i) it becomes a new root [after a cut], or
(ii) it receives a parent [after Extract-Min]

5

Decrease-Key
•Decrease-Key(H, x, k):

Report error if k key of x;
Update the key of x to k ;
/* fix if min-heap property is violated */

if (x root and x’s key its parent’s key)
{ Cut x from its parent;

Perform further cuts (recursively); }
Update min[H] if needed

6

Before Decrease-Key

8

1325

15

19

21

32 16

52

H

35?? Marked node

min(H)

27

12

decrease
key to 18

Decrease-Key (Example)

22

7

The node with key 32 has
its key decreased to 18

8

1325

15

19

21

18 16

52

H

35?? Marked node

min(H)

Decrease-Key (Example)

27

12

decrease
key to 3

22

8

The node with key 21 has
its key decreased to 3

8

1325

15

19 18 16

52

H

35?? Marked node

min(H)

Decrease-Key (Example)

27

12

3

decrease
key to 14

22

9

Decrease Key to 14 (Step 1)

8

1325

15

19 18 16

52

H

14?? Marked node

min(H)

Decrease-Key (Example)

27

12

3

22

10

Decrease Key to 14 (Step 2)

8

1325

15

19 18 16

52

H

14?? Marked node

min(H)

Decrease-Key (Example)

27

12

3

22

11

Decrease Key to 14 (Step 3)

8

1325

15

19 18 16

52

H

14?? Marked node

min(H)

Decrease-Key (Example)

27

12

3

22

12

Decrease-Key
•We see that if Decrease-Key decides to

cut a node x from its parent, it may
create a series of further cuts
 we call this cascading cuts

cascading waterfall cascading fountain

13

Amortized Cost
•Let H’denote the heap just before the

Decrease-Key operation
•Let c = #cascading cuts
 actual cost = O(c+1)

potential before: t(H’) + 2m(H’)
potential after:
at most (t(H’) + c + 1) + 2(m(H’) –c + 1)

 amortized cost O(c+1) + 3 –c = O(1)

Why?

14

Delete

•Delete(H, x):

Decrease-Key(H, x, -1);

Extract-Min(H);

 Amortized cost
= O(1) + O(log n) = O(log n)

15

Bounding MaxDeg(n)
•Recall that #trees and height of a tree

in a Fibonacci heap is unbounded
•Can you obtain a component tree in

Fibonacci heap whose height = (n) ?

•In contrast, we shall show that the
degree of a node is bounded by (log n)
•We denote this bound by MaxDeg(n)

16

Bounding MaxDeg(n)

•For any node x, we let

size(x) = #nodes in the subtree
rooted at x, including itself

deg(x) = #children of x

•Our idea is to show that size(x) is
exponential in deg(x)

17

A Useful Lemma

Lemma: Let x be a node in the Fibonacci
heap, and suppose that deg(x) = k
Let y1, y2, …, yk be the children of x,
ordered by the time they are linked to x
Then, we have:

deg(y1) 0, and
deg(yj) j –2 for j = 2,3,…,k

18

Proof
• deg(y1) 0 is trivial

•By the time yj is linked to x, the nodes
y1, y2, …, yj-1 were already linked to x
 x has at least j–1 children
 deg(yj) at that time

= deg(x) at that time j–1

•Since then, yj loses at most 1 child (why??),
so deg(yj) j–2

19

Fibonacci Number
•We are about to see why Fibonacci heap

has “Fibonacci”in its name

•Define the kth Fibonacci Number, Fk, by:

• F0 = 0, F1 = 1,
• For k 2, Fk = Fk-2 + Fk-1

•For example, the first few Fibonacci
numbers are: 0, 1, 1, 2, 3, 5, 8, 13, 21 …

20

Two Lemmas on Fk

Lemma: For all integers k 0,

Fk+2 = 1 + F0 + F1 + F2 + …+ Fk

Lemma: For all integers k 0,

Fk+2 k ,

where = (1+5)/2 = 1.61803…

How to prove? (By induction)

21

A Key Result

Lemma: Let x be a node in the Fibonacci
heap, and suppose that deg(x) = k
Then, we have:

size(x) Fk+2 k

Combining previous lemmas, we can show:

Proof: Let sk = min possible size of a node
whose degree is k

 size(x) sk

22

Proof of Key Result
•We shall show by induction that:

sk Fk+2

If it is true, our proof completes

•Base Case: s0 = 1 = F2 and s1 = 2 = F3

•Inductive Case:
Assume sj Fj+2 for all j = 0,1,…, k-1

23

Proof of Key Result
•Consider any deg-k node whose size = sk

•By our lemma, we see that its children,
say y1, y2, …, yk have degrees satisfying:

deg(y1) 0, and deg(yj) j–2 for j 2

 sk = 1 + size(y1) + size(y2) + …+ size(yk)
 1 + sdeg(y1) + sdeg(y2) + …+ sdeg(yk)

 1 + s0 + s0 + …+ sk-2  1 + F2 + F2 + …+ Fk

= 1 + (F0 + F1) + F2 + …+ Fk = Fk+2

24

Bounding MaxDeg(n)

Theorem: MaxDeg(n) logn = O(log n)

Immediately, we have:

Proof: For any node x with deg k, we have:
n size(x) k

 degree of any node logn
 the theorem thus follows

Remark: Since MaxDeg(n) must be an integer, we can
show a tighter bound: MaxDeg(n) blognc

