CS4311

Design and Analysis of
Algorithms

Lecture 19: Fibonacci Heap IT



About this lecture

»+ Decrease-Key & Delete in Fibonacci Heap

= Based on cutting some node from its
parent, and a simple rule which decides
if further cuts are needed

» Bounding MaxDeg(n)



Rule of Further Cuts

* Let x be a node with a parent node vy,
such that at some time, x was a root and
was then linked to y

The rule is as follows:

After the above linking event,
as soon as X has lost its second child,
we cut x from y, making it a new root



Rule of Further Cuts

» To help us keep track of the status of

each node, we use marking in a node !l

- we mark a non-root node x if it has
lost the first child

= If a non-root marked node loses a
child, it is cut from its parent

- we unmark a node x if
(i) it becomes a new root [after a cut], Or
(ii) it receives a parent [after Extract-Min]

4



Decrease-Key

+ Decrease-Key(H, x, k):

Report error if k > key of x;
Update the key of x to k ;

/* fix 1f min-heap property is violated */
if (x #root and x's key < its parent's key)

{ Cut x from its parent;
Perform further cuts (recursively); }

Update min[H] if needed



Decrease-Key (Example)

Before Decrease-Key

decrease
key to 18



Decrease-Key (Example)

The node with key 32 has
its key decreased to 18

decrease
key to 3



Decrease-Key (Example)

The node with key 21 has
its key decreased to 3

key to 14



Decrease-Key (Example)
Decrease Key to 14 (Step 1)




Decrease-Key (Example)
Decrease Key to 14 (Step 2)

10



Decrease-Key (Example)
Decrease Key to 14 (Step 3)

11



Decrease-Key

* We see that if Decrease-Key decides to
cut a node x from its parent, it may
create a series of further cuts

=> we call this cascading cuts

12



Amortized Cost

+ Let H' denote the heap just before the
Decrease-Key operation

» Let ¢ = #cascading cuts

Why?

= actual cost = O(c+1)
potential before: t(H') + 2m(H') /

potential after:

at most

(t(H)+c+1)+2(m(H)-c+ 1)

= amortized cost < O(c+1) + 3 -c = O(1)

13



Delete

+ Delete(H, x):

Decrease-Key(H, x, -00);
Extract-Min(H);

= Amortized cost
= 0O(1) + O(logn) = O(log n)

14



Bounding MaxDeg(n)

* Recall that #trees and height of a tree

in a Fibonacci heap is unbounded

» Can you obtain a component tree in
Fibonacci heap whose height = ®(n) ?

+ In contrast, we shall show that the

degree of a node is bounded by O(log n)
+ We denote this bound by MaxDeg(n)

15



Bounding MaxDeg(n)

* For any node x, we let

size(x) = #nodes in the subtree
rooted at x, including itself

deg(x) = #children of x

* QOur idea is to show that size(x) is

exponential in deg(x)

16



A Useful Lemma

Lemma: Let x be a node in the Fibonacci
heap, and suppose that deg(x) = k

Let vy, Ys, ..., Y be The children of x,
ordered by the time they are linked o x

Then, we have:
deg(y;) > O, and
deg(yj) >j-2 forj=2_3,.k

17



Proof

deg(y;) > O is trivial
+ By the time y, is linked to X, the nodes
Y1. Y2, -, Yj.1 Were already linked to x
= X has at least j-1 children
2 deg(y;) at that time

= deg(x) at that time > j-1

+ Since then, Y loses at most 1 child (why??),
so deg(y;) = j-2

18



Fibonacci Number

* We are about to see why Fibonacci heap
has "Fibonacci” in its name

+ Define the k™ Fibonacci Number, F,, by:

FO:O, FI:].,
FOr'kZZ, Fk:Fk-2+Fk-1

* For example, the first few Fibonacci

numbersare: 0,1,1. 2, 3,5, 8,13, 21 ..

19



Two Lemmas on F,
Lemma: For all integers k > 0,
Fr.o=1+Fo+Fi+F+ .+ F
Lemma: For all integers k>0,

I:.k+22 (pk /
where @ = (1+V5)/2 = 1.61803...

How to prove? (By induction)

20



A Key Result

Combining previous lemmas, we can show:

Lemma: Let x be a node in the Fibonacci
heap, and suppose that deg(x) = k

Then, we have:
SiZC(X) > Fk+2 > (Pk

Proof: Let s, = min possible size of a node
whose degree is k
= size(x) > s,

21



Proof of Key Result

* We shall show by induction that:
S, 2> Fy.

If it is frue, our proof completes

+ Base Case:s;=1=F, ands; =2 =F,
* Inductive Case:

Assume s;> F,, forall j=0,1,.., k-1

22



Proof of Key Result

» Consider any deg-k node whose size= s,

» By our lemma, we see that its children,
say vYi, Ys, ... Y have degrees satisfying:

deg(y,) > O, and deg(y;) = j-2 for j>2

> s,= 1+size(y,) + size(y,) + ... + size(y,)

1+ Sgegiyp) * Sdegly) * = * Sdeg(y,)
1 +SO+ So"' +Sk—2 > 1"‘ Fz"' Fz"‘ I Fk

1+ (Fo+ F)+F,+ .. +F. = F..,

AV Y

23



Bounding MaxDeg(n)

Immediately, we have:

Theorem: MaxDeg(n) < log, n = O(log n)

Proof: For any node x with deg k, we have:
n >size(x) > @k
- degree of any node < log, n
> the theorem thus follows

Remark: Since MaxDeg(n) must be an integer, we can
show a tighter bound: MaxDeg(n) < [log, n|

24



