CS4311

Design and Analysis of
Algorithms

Lecture 18: Fibonacci Heap I

About this lecture

* Introduce Fibonacci Heap
» another example of mergeable heap

no good worst-case guarantee for any
opera‘rion (except Insert/Make-Heap)

+ excellent amortized cost to perform
each operation

Fibonacci Heap

» Like binomial heap, Fibonacci heap

consists of a set of min-heap ordered
component trees

» However, unlike binomial heap, it has

no limit on #trees (up to O(n)), and
no limit on height of a tree (up to O(n))

Fibonacci Heap

» Consequently,

Find-Min, Extract-Min, Union,
Decrease-Key, Delete

all have worst-case O(n) running time

- However, in the amortized sense, each

operation performs very quickly ...

Comparison of Three Heaps

Binary Binomial | Fibonacci
(worst-case) | (worst-case) | (amortized)
Make-Heap ©(1) ®(1) ®(1)
Find-Min ®(1) ®(log n) ®(1)
Extract-Min | ©O(log n) O(log n) O(log n)
Insert O(log n) ®(log n) ®(1)
Delete O(log n) ®(log n) ®(log n)
Decrease-Key| ©(log n) ®(log n) 0(1)
Union ®(n) ®(log n) ®(1)

Fibonacci Heap

+ If we never perform Decrease-Key or
Delete, each component tree of Fibonacci
heap will be an unordered binomial tree

* An order-k unordered binomial tree U,
IS a Tree whose root is connected to
U1, Ur, ..., Uy, in any order

=> in this case, height = O(log n)

* Ingeneral, the tree can be very skew

Unordered Binomial Tree

Uo © ulg ;:g L;{%
O

Properties of U,

Lemma: For an unordered binomial tree U,,
1. There are 2¥ nodes
2. height = k
3. deg(root) = k. deg(other node) < k

4. Children of rootare U, ,, U, ,, ..., U,
in any order

5. Exactly C(k,i) nodes at depth i

How to prove? (By induction on k)

Potential Function

To help the running time analysis, we may
mark a tree node from time to time
Roughly, we mark a node if it has lost a child

For a heap H, let
t(H) = #trees, m(H) = #marked nodes
The potential function @ for H is simply:

®(H) = t(H) + 2 m(H)

[Here, we assume a unit of potential is large enough
to pay for any constant amount of work]

9

Remark

+ Let @, = potential after ith operation

2> O,=0, &, >d, foralli

So, if each operation sets its amortized
cost a, by the formula (o, = ¢, + ®, - ©, 4)
= total amortized > total actual

We claim that we can compute MaxDeg(n),
which can bound max degree of any node.
Also, MaxDeg(n) = O(log n)

=> This claim will be proven later

10

Fibonacci Heap Operation

* Make-Heap():

It just creates an empty heap
= no trees and no nodes at all !
= amortized cost = O(1)

11

Fibonacci Heap Operation

»+ Find-Min(H):

The heap H always maintain a pointer
min(H) which points at the node with
minimum key

= actual cost =1
= no change in 1(H) and m(H)
= amortized cost = O(1)

12

Fibonacci Heap Operation

+ Insert(H, x,k):

I't adds a tree with a single node to H,
storing the item x with key k

Also, update min(H) if necessary
= t(H) increased by 1, m(H) unchanged

= amortized cost :/2 +1=0(1)

Add a node, and
update min(H)

13

Insertion (Example)

Before Insertion

" ®
® @

Q Marked node

<«— min(H)
|

14

Insertion (Example)
Inserting an item with key = 17

! @ <«— min(H)
|

15

@ Marked node

Insertion (Example)

Inserting an item with key = 6

|

@4——— min(H)

@ Marked node Question: What will happen
after k consecutive Insert?

16

Fibonacci Heap Operation

° UniOn(Hl,Hz):

It puts the trees in H; and H, together,
forming a new heap H

- does not merge any trees into one
Set min(H) accordingly
= +(H) and m(H) unchanged

= amortized cost :/2 +0=0(1)

Put trees together,
and set min(H)

17

Union (Example)

Before Union

18

Union (Example)
After Union

‘ @\ min(H)

@@

19

Fibonacci Heap Operations

Insert and Union are both very lazy...

Extract-Min is a hardworking operation

= It reduces the #trees by joining
them together

* What if Extract-Min is also lazy ??

* a sequence of n/2 Insert and n/2
Extract-Min has worst-case O(n?) time

20

Extract-Min

- Two major steps:

1. Remove node with minimum key = its
children form roots of new trees in H

2. Consolidation: Repeatedly joining
roots of two trees with same degree

= in the end, the roots of any two
trees do not have same degree

** During consolidation, if a marked node
receives a parent = we unmark the node

21

Extract-Min (Example)

Before Extract-

H @ 4/ min(
® @
@)

Q Marked node

Min

1@

@ @@

22

Extract-Min (Example)

Step 1. Remove node with min-key

23

Extract-Min (Example)
Step 2: Consolidation

24

Extract-Min (Example)
Step 2: Consolidation

25

Extract-Min (Example)
Step 2: Consolidation

26

Extract-Min (Example)
Step 3: After consolidation, update min(H)

- <«— min(H) @

|
13 19

27

More on Consolidation
The consolidation step will examine each
tree in H one by one, in arbitrary order

To facilitate the step, we use an array of
size MaxDeg(n)

[Recall: MaxDeg(n) > max deg of a node in final heap]

At any time, we keep track of at most
one tree of a particular degree

- If there are two, we join their roots

28

Amortized Cost

+ Let H' denote the heap just before the
Extract-Min operation

=» actual cost: t(H') + MaxDeg(n)
potential before: t(H')+ 2m(H')
potential after:
at most MaxDeg(n) + 1 + 2m(H')

[since #trees < MaxDeg(n) +1, and no new marked nodes]

= amortized cost < 2MaxDeg(n) + 1 = O(log n)

29

