
1

CS4311
Design and Analysis of

Algorithms

Lecture 18: Fibonacci Heap I

2

About this lecture

•Introduce Fibonacci Heap
•another example of mergeable heap
•no good worst-case guarantee for any

operation (except Insert/Make-Heap)

•excellent amortized cost to perform
each operation

3

Fibonacci Heap
•Like binomial heap, Fibonacci heap

consists of a set of min-heap ordered
component trees

•However, unlike binomial heap, it has
• no limit on #trees (up to O(n)), and
• no limit on height of a tree (up to O(n))

4

Fibonacci Heap
•Consequently,

Find-Min, Extract-Min, Union,
Decrease-Key, Delete

all have worst-case O(n) running time

•However, in the amortized sense, each
operation performs very quickly …

5

Comparison of Three Heaps

(log n)

(log n)

(log n)

(log n)

(log n)

(log n)

(1)

Binomial
(worst-case)

(1)(1)Make-Heap

(1)(1)Find-Min

(log n)(log n)Delete

(1)(log n)Insert

(1)(n)Union

(1)(log n)Decrease-Key

(log n)(log n)Extract-Min

Fibonacci
(amortized)

Binary
(worst-case)

6

Fibonacci Heap
•If we never perform Decrease-Key or

Delete, each component tree of Fibonacci
heap will be an unordered binomial tree
•An order-k unordered binomial tree Uk

is a tree whose root is connected to
Uk-1, Uk-2, …, U0, in any order

 in this case, height = O(log n)

•In general, the tree can be very skew

7

Unordered Binomial Tree

U0 U1 U2 U2

U3 U3 U3

…

8

Properties of Uk

Lemma: For an unordered binomial tree Uk,
1. There are 2k nodes
2. height = k
3. deg(root) = k ; deg(other node) k
4. Children of root are Uk-1, Uk-2, …, U0

in any order
5. Exactly C(k,i) nodes at depth i

How to prove? (By induction on k)

9

Potential Function
•To help the running time analysis, we may

mark a tree node from time to time
• Roughly, we mark a node if it has lost a child

•For a heap H, let
t(H) = #trees, m(H) = #marked nodes

•The potential function for H is simply:

(H) = t(H) + 2 m(H)

[Here, we assume a unit of potential is large enough
to pay for any constant amount of work]

10

Remark
•Let i = potential after ith operation
 0 = 0, i 0 for all i
So, if each operation sets its amortized
cost i by the formula (i = ci + i - i-1)
 total amortized total actual

•We claim that we can compute MaxDeg(n),
which can bound max degree of any node.
Also, MaxDeg(n) = O(log n)
 This claim will be proven later

11

Fibonacci Heap Operation

•Make-Heap():

It just creates an empty heap
 no trees and no nodes at all !!
 amortized cost = O(1)

12

Fibonacci Heap Operation

•Find-Min(H):

The heap H always maintain a pointer
min(H) which points at the node with
minimum key
 actual cost = 1
 no change in t(H) and m(H)
 amortized cost = O(1)

13

Fibonacci Heap Operation

•Insert(H,x,k):

It adds a tree with a single node to H,
storing the item x with key k
Also, update min(H) if necessary
 t(H) increased by 1, m(H) unchanged
 amortized cost = 2 + 1 = O(1)

Add a node, and
update min(H)

14

Before Insertion

8

1325

15

19

21

32 16

52

12
H

15

?? Marked node

min(H)

Insertion (Example)

15

Inserting an item with key = 17

8

1325

15

19

21

32 16

52

H

15

?? Marked node

min(H)

Insertion (Example)

17

12

16

Inserting an item with key = 6

8

1325

15

19

21

32 16

52

H

15

?? Marked node

min(H)

Insertion (Example)

17 6

Question: What will happen
after k consecutive Insert?

12

17

Fibonacci Heap Operation
•Union(H1,H2):

It puts the trees in H1 and H2 together,
forming a new heap H
•does not merge any trees into one
Set min(H) accordingly
 t(H) and m(H) unchanged
 amortized cost = 2 + 0 = O(1)

Put trees together,
and set min(H)

18

Before Union

8

1325

15

19

21

32 16

52

H1

15

min(H1)

Union (Example)

12

3

13

H2
14

29 min(H2)

19

After Union

8

1325

15

19

21

32 16

52

H

15

Union (Example)

12

3

13

14

29
min(H)

20

Fibonacci Heap Operations
• Insert and Union are both very lazy…

• Extract-Min is a hardworking operation
 It reduces the #trees by joining

them together

•What if Extract-Min is also lazy ??
•a sequence of n/2 Insert and n/2

Extract-Min has worst-case O(n2) time

21

Extract-Min
•Two major steps:

1. Remove node with minimum key  its
children form roots of new trees in H

2. Consolidation: Repeatedly joining
roots of two trees with same degree
 in the end, the roots of any two

trees do not have same degree
** During consolidation, if a marked node

receives a parent  we unmark the node

22

Before Extract-Min

8

1325

15

19

21

32 16

52

H

15

?? Marked node

min(H)

Extract-Min (Example)

17

12

23

Step 1: Remove node with min-key

1325

15

19

21

32 16

52

H

15

?? Marked node

Extract-Min (Example)

17

12

24

Step 2: Consolidation

1325

15

19

21

32 16

52

H

15

?? Marked node

Extract-Min (Example)

17

12

25

Step 2: Consolidation

13

25

15

19

21

32 16

52

H

15

?? Marked node

Extract-Min (Example)

17

12

26

Step 2: Consolidation

13

25

15

19

21

32 16

52

H

15

?? Marked node

Extract-Min (Example)

17

12

27

Step 3: After consolidation, update min(H)

13

25

15

19

21

32 16

52

H

15

?? Marked node

Extract-Min (Example)

17

12 min(H)

28

More on Consolidation
•The consolidation step will examine each

tree in H one by one, in arbitrary order
•To facilitate the step, we use an array of

size MaxDeg(n)
[Recall: MaxDeg(n) max deg of a node in final heap]

•At any time, we keep track of at most
one tree of a particular degree
 If there are two, we join their roots

29

Amortized Cost
•Let H’denote the heap just before the

Extract-Min operation
 actual cost: t(H’) + MaxDeg(n)

potential before: t(H’) + 2m(H’)
potential after:

at most MaxDeg(n) + 1 + 2m(H’)
[since #trees MaxDeg(n) +1, and no new marked nodes]

 amortized cost 2MaxDeg(n) + 1 = O(log n)

