
1

CS4311
Design and Analysis of

Algorithms

Lecture 17: Binomial Heap

2

About this lecture
•Binary heap supports various operations

quickly: extract-min, insert, decrease-key
•If we already have two min-heaps, A and B,

there is no efficient way to combine them
into a single min-heap

•Introduce Binomial Heap
•can support efficient union operation

3

Mergeable Heaps
•Mergeable heap : data structure that

supports the following 5 operations:

•Make-Heap() : return an empty heap
•Insert(H,x,k) : insert an item x with

key k into a heap H
•Find-Min(H) : return item with min key
•Extract-Min(H) : return and remove
•Union(H1, H2) : merge heaps H1 and H2

4

Mergeable Heaps
•Examples of mergeable heap :

Binomial Heap (this lecture)
Fibonacci Heap (next lecture)

•Both heaps also support:
•Decrease-Key(H,x,k) :

•assign item x with a smaller key k
•Delete(H,x) : remove item x

5

Binary Heap vs Binomial Heap

(1)(1)Make-Heap

(log n)(1)Find-Min

(log n)(log n)Delete

(log n)(log n)Insert

(log n)(n)Union

(log n)(log n)Decrease-Key

(log n)(log n)Extract-Min

Binomial
Heap

Binary
Heap

6

Binomial Heap
•Unlike binary heap which consists of a

single tree, a binomial heap consists of a
small set of component trees
•no need to rebuild everything when

union is perform

•Each component tree is in a special
format, called a binomial tree

7

Binomial Tree
Definition:

A binomial tree of order k, denoted by
Bk, is defined recursively as follows:
•B0 is a tree with a single node
•For k 1, Bk is formed by joining two

Bk-1, such that the root of one tree
becomes the leftmost child of the
root of the other

8

Binomial Tree
B0 B1 B2 B3

B4

9

Properties of Binomial Tree
Lemma: For a binomial tree Bk,

1. There are 2k nodes
2. height = k
3. deg(root) = k ; deg(other node) k
4. Children of root, from left to right,

are Bk-1, Bk-2, …, B1, B0

5. Exactly C(k,i) nodes at depth I

How to prove? (By induction on k)

10

Binomial Heap
•Binomial heap of n elements consists of a

specific set of binomial trees

•Each binomial tree satisfies min-heap
ordering: for each node x,

key(x) key(parent(x))

•For each k, at most one binomial tree
whose root has degree k
(i.e., for each k, at most one Bk)

11

Binomial Heap
Example: A binomial heap with 13 elements

8

1325

41

15

19

33

35

21

32 16

52

12

12

Binomial Heap
•Let r = dlog (n+1)e, and

br-1, br-2, …, b2, b1, b0 
be binary representation of n

•Then, we can see that an n-node binomial
heap contains Bk if and only if bk = 1

•Also, an n-node binomial heap has at
most dlog (n+1)e binomial trees

13

Binomial Heap

B0 B2
B4

E.g., 21(dec) = 10101(bin)

 any 21-node binomial heap must contain:

14

Binomial Heap Operations
•With the binomial heap,

•Make-Heap(): O(1) time
•Find-Min(): O(log n) time
•Decrease-Key(): O(log n) time

[Decrease-Key assumes we have the pointer to
the item x in which its key is changed]

•Remaining operations : Based on Union()

15

Union Operation
•Recall that:

an n–node binomial heap
corresponds to

binary representation of n
•We shall see:

Union binomial heaps with n1 and n2 nodes
corresponds to

adding n1 and n2 in binary representations

16

Union Operation

•Let H1 and H2 be two binomial heaps

•To Union them, we process all binomial
trees in the two heaps with same order
together, starting with smaller order
first

•Let k be the order of the set of binomial
trees we currently process

17

Union Operation
There are three cases:

1. If there is only one Bk  done

2. If there are two Bk

 Merge together, forming Bk+1

3. If there are three Bk

 Leave one, merge remaining to Bk+1

After that, process next k

18

Union two binomial heaps with 5 and 13 nodes

8

1325

41

15

19

33

35

21

32 16

52

12

9

1114

31

4

H1

H2

19

8

1325

41

15

19

33

35

21

32 16

52

4

9

1114

31

12

after
processing

k = 0

20

8

1325

41

15

19

33

35

21

32 16

52

4

9

1114

31

12

after
processing

k = 1, 2

21

15

19

33

35

21

32 16

52

4

12

8

1325

41

9

1114

31

Done after
processing

k = 3

22

Binomial Heap Operations

•So, Union() takes O(log n) time
•For remaining operations,

Insert(), Extract-Min(), Delete()
how can they be done with Union?

•Insert(H, x, k):
 Create new heap H’, storing the item x

with key k; then, Union(H, H’)

23

Binomial Heap Operations
•Extract-Min(H):
 Find the tree Bj containing the min;

Detach Bj from H  forming a heap H1 ;
Remove root of Bj  forming a heap H2 ;
Finally, Union(H, H’)

•Delete(H, x):
 Decrease-Key(H,x,-1); Extract-Min(H);

24

Extract-Min(H)
Step 1: Find Bj with Min

8

1325

41

15

19

33

35

21

32 16

52

12H

Bj with Min

25

8

1325

41

15

19

33

35

21

32 16

52

12H1

Extract-Min(H)
Step 2: Forming two heaps

H2

26

1325

41

15

19

33

35

21

32 16

52

12

Extract-Min(H)
Step 3: Union two heaps

