CS4311

Design and Analysis of
Algorithms

Lecture 17: Binomial Heap

About this lecture

Binary heap supports various operations
quickly: extract-min, insert, decrease-key

» If we already have two min-heaps, A and B,
there is no efficient way o combine them

into a single min-heap

* Introduce Binomial Heap
» can support efficient union operation

Mergeable Heaps

* Mergeable heap : data structure that
supports the following 5 operations:

- Make-H

eap() : return an empty heap

+ Insert(

- Find-Mi

H,x,k) : insert an item x with
key k into a heap H

n(H) : returnitem with min key

+ Extract-Min(H) : return and remove

* Union(

., H,) : merge heaps H; and H,

Mergeable Heaps

+ Examples of

Binomial H
Fibonacci

mergeable heap :
eap (this lecture)

Heap (next lecture)

* Both heaps also support:
+ Decrease-

Key(H,x k) :

» assign item x with a smaller key k
+ Delete(H,x): remove item x

Binary Heap vs Binomial Heap

Binary Binomial

Heap Heap

Make-Heap ©(1) O(1)
Find-Min ®(1) ®(log n)
Extract-Min | ©O(log n) O(log n)
Insert O(log n) ®(log n)
Delete O(log n) ®(log n)
Decrease-Key| ©(log n) ®(log n)
Union ®(n) ®(log n)

Binomial Heap

Unlike binary heap which consists of a
single tree, a binomial heap consists of a
small set of component trees

no heed to rebuild everything when
union is perform

Each component tree is in a special
format, called a binomial tree

Binomial Tree

Definition:
A binomial tree of order k, denoted by
B,, is defined recursively as follows:
+ B, is a tree with a single node

* For k>1, B, is formed by joining two
B, 1, such that the root of one tree
becomes the leftmost child of the
root of the other

Binomial Tree

Bo O Blg %g B, ?g
By

Properties of Binomial Tree

Lemma: For a binomial tree B,,
1. There are 2k nodes
2. height = k
3. deg(root) = k. deg(other node) < k
4. Children of root, from left to right,
are B, {, B, », ..., B, By

. Exactly C(k,i) nodes at depth I

How to prove? (By induction on k)

Binomial Heap

» Binomial heap of n elements consists of a
specific set of binomial trees

» Each binomial tree satisfies min-heap
ordering: for each node X,

key(x) > key(parent(x))

- For each k, at most one binomial tree
whose root has degree k

(i.e., for each k, at most one B,)

10

Binomial Heap

Example: A binomial heap with 13 elements

@
&
& @ @

G

11

Binomial Heap

*+ Let r = [log (n+1)], and

(Bry, bra, .. ba, by, by)
be binary representation of n

- Then, we can see that an n-node binomial

heap contains By if and only if b, =1

» Also, an n-node binomial heap has at
most [log (n+1)| binomial trees

12

Binomial Heap

E.g., 21 4ey = 10101,
=> any 21-node binomial heap must contain:

Bo O ;fg B, ?;

Binomial Heap Operations
* With the binomial heap,

* Make-Heap(): O(1) time
 Find-Min(): O(log n) time
+ Decrease-Key(): O(log n) time

[Decrease-Key assumes we have the pointer to
the item x in which its key is changed]

* Remaining operations : Based on Union()

14

Union Operation

- Recall that:

an n-node binomial heap
corresponds to
binary representation of n

- We shall see:

Union binomial heaps with n; and n, nodes
corresponds to
adding n; and n, in binary representations

15

Union Operation

* Let H; and H, be two binomial heaps

» To Union them, we process all binomial
trees in the two heaps with same order
together, starting with smaller order
first

- Let k be the order of the set of binomial

trees we currently process

16

Union Operation

There are three cases:
1. If there is only one B, > done

2. If there are two B,
> Merge together, forming B,,;

3. If there are three B,
- Leave one, merge remaining to B,,,

After that, process next k

17

Union two binomial heaps with 5 and 13 nodes

_—
‘————__—

@
& @ @

19,

after
processing

@'@

./@- 0 “oe

|
@ Done after
processing
k=3

Binomial Heap Operations

* S0, Union() takes O(log n) time
* For remaining operations,
Insert(), Extract-Min(), Delete()
how can they be done with Union?

+ Insert(H, x, k):

=> Create new heap H', storing the item x
with key k; then, Union(H, H')

22

Binomial Heap Operations

+ Extract-Min(H):

= Find the tree B, containing the min;
Detach B; from H - forming a heap H;
Remove root of B; > forming a heap H,:

Finally, Union(H, H’)

+ Delete(H, x):
= Decrease-Key(H,x,-00); Extract-Min(H);

23

Extract-Min(H)
Step 1. Find B, with Min

e

BJ- with Min

24

Extract-Min(H)
Step 2: Forming two heaps

)
\ @
oo | J°

~
N\

25

Extract-Min(H)
Step 3: Union two heaps

26

