
1

CS4311
Design and Analysis of

Algorithms

Lecture 16: Amortized Analysis III

2

About this lecture

•Application of Amortization
•Managing a Dynamic Table

3

Dynamic Table

•Sometimes, we may not know in advance
the #objects to be stored in a table

•We may allocate space for the table, say
with malloc(), at the beginning

•When more objects are inserted, the
space allocated before may not be enough

4

Dynamic Table

•Then, the table must be reallocated with
a larger size, say with realloc(), and all
objects from original table must be
copied over into the new, larger table

•Similarly, if many objects are deleted, we
may want to reallocate the table with a
smaller size (to save space)

•Any good choice for the reallocation size?

5

Load Factor
•For a table T, we define the load factor,

denoted by LF(T), to be the ratio of
#items stored in T and the size of T
•That is, LF is between 0 and 1, and the

fuller the T, the larger its LF

•To measure how good the space usage in
a reallocation scheme, we can look at the
load factor it guarantees

6

Load Factor
•Obviously, we have a reallocation scheme

that guarantees a load factor of 1:
•Rebuild table for each indel

•However, n indels can cost (n2) time
•In general, we want to trade some space

for time efficiency
•Can we ensure any n indels cost (n)

time, and a not-too-bad load factor?

7

Handling Insertion
•Suppose we have only insertion operations
•Our reallocation scheme is as follows:

If T is full after insertion of an item,
we expand T by doubling its size

•It is clear that at any time,
LF(T) is at least 0.5

•Question: How about the insertion cost?

8

Handling Insertion
•Observe that the more the items stored,

the closer the next expansion will come
•Let num(T) = #items currently stored in T
•Let size(T) = size of T
•To reflect this observation, we define a

potential function such that

T= 2 num(T) –size(T)

9

Handling Insertion
•The function has some nice properties:

•Immediately before an expansion,
T= num(T)

 this provides enough cost to copy items into new table

•Immediately after an expansion,
T= 0

 this resets everything, and simplify the analysis

•Its value is always non-negative

10

Amortized Cost of Insertion
•Now, what will be amortized insertion cost?
•Notation

• ci = actual cost of ith operation
• i = amortized cost of ith operation
• numi = #items in T after ith operation
• sizei = size of T after ith operation
• i = Tafter ith operation

•There are two cases …

11

Case 1: No Expansion

•If ith insertion does not cause expansion:

i = ci + i - i-1

= 1 + (2numi –sizei) - (2numi-1 –sizei-1)
= 1 + 2numi - 2numi-1

= 3

12

Case 2: With Expansion

•If ith insertion causes an expansion:
i = ci + i - i-1

= numi + (2numi –sizei) - (2numi-1 –sizei-1)
= numi + 0 –(2(numi –1) - numi)
= 2

Conclusion:
amortized cost for insertion = O(1)

13

Handling Insertion & Deletion
•Suppose we have both insertion & deletion
•Can we still maintain a reallocation scheme

with LF(T) is at least 0.5 ?
•To do so,

•when table is full, we need to expand as
usual, AND

•when table is just below half-full, we
need to contract immediately

14

Handling Insertion & Deletion
•Will the following scheme work?

If T is full after insertion of an item,
we expand T by doubling its size

If T is below half-full after deletion,
we contract T by halving its size

•In worst-case, n indels cost (n2) time

15

Slight Modification
•The previous scheme fails because we are

too greedy …(contracting too early)
•Let us modify our scheme slightly:

If T is full after insertion of an item,
we expand T by doubling its size

If T is only (1/4)-full after deletion,
we contract T by halving its size

•At any time, LF(T) is at least 0.25

16

Handling Insertion & Deletion
•Now, using this scheme,

•If table is more than (1/2)-full, we
should start worrying about the next
expansion watch for insertion

•If table is less than (1/2)-full, we
should start worrying about the next
contraction watch for deletion

•This gives us some intuition of how to
define the potential function

17

New Potential Function
•Our new potential function is a bit

strange (it has two parts):

•If table is at least half full:
T= 2 num(T) –size(T)

•If table is less than half full:

T= size(T)/2 –num(T)

• Can you compute the amortized cost for each operation?

18

Nice Properties
•The function has some nice properties:

•Immediately before a resize,
T= num(T)

 this provides enough cost to copy items into new table

•At half-full or immediately after resize,
T= 0

 this resets everything, and simplify the analysis

•Its value is always non-negative

19

Amortized Insertion Cost
•If ith operation = insertion
•If it causes an expansion:

i = same as before = 2
•If it does not cause expansion:

• if T at least half full,
i = same as before = 3

• if T less than half full,
i = ci + (sizei/2 –numi) - (sizei-1/2 –numi-1)

= 1 + (-1) = 0

20

Amortized Deletion Cost
•If ith operation = deletion

•If it causes a contraction:
i = ci + (sizei/2 –numi) - (sizei-1/2 –numi-1)

= numi + 0 –(numi- 1) = 1

•If it does not cause a contraction:
• if T less than half full,
i = ci + (sizei/2 –numi) - (sizei-1/2 –numi-1)

= 1 + 1 = 2

21

Amortized Deletion Cost (cont)

•If it does not cause a contraction:
• if T at least half full,
i = ci + (2numi –sizei) - (2numi-1 –sizei-1)

= 1 - 2 = -1

22

Conclusion

•The amortized insertion or deletion cost
in our new scheme = O(1)

•Meaning:
Any n operations in total cost O(n) time

•Remark: There can be other reallocation
schemes with O(1) load factor and O(1)
amortized cost (Try to think about it !)

