
1

CS4311
Design and Analysis of

Algorithms

Lecture 14: Amortized Analysis I

2

About this lecture
•Given a data structure, amortized analysis

studies in a sequence of operations, the
average time to perform an operation

•Introduce amortized cost of an operation

•Three Methods for the Same Purpose
(1) Aggregate Method
(2) Accounting Method
(3) Potential Method

This Lecture

3

Super Stack
•Your friend has created a super stack,

which, apart from PUSH/POP, supports:

SUPER-POP(k): pop top k items

•Suppose SUPER-POP never pops more
items than current stack size

•The time for SUPER-POP is O(k)
•The time for PUSH/POP is O(1)

4

Super Stack
•Suppose we start with an empty stack, and

we have performed n operations
•But we don’t know the order

Questions:
•Worst-case time of a SUPER-POP ?

Ans. O(n) time [why?]
•Total time of n operations in worst case ?

Ans. O(n2) time [correct, but not tight]

5

Super Stack
•Though we don’t know the order of the

operations, we still know that:
•There are n PUSH/POP
 Time spent on PUSH/POP = O(n)

•# items popped by all SUPER-POP
cannot exceed total # items ever
pushed into stack
 Time spent on SUPER-POP = O(n)

So, total time of n operations = O(n) !!!

6

Amortized Cost
•So far, there are no assumptions on n and

the order of operations. Thus, we have:

For any n and any sequence of n operations,
worst-case total time = O(n)

•We can think of each operation performs in
average O(n) / n = O(1) time

We say amortized cost = O(1) per operation
(or, each runs in amortized O(1) time)

7

Amortized Cost
•In general, we can say something like:

• OP1 runs in amortized O(x) time
• OP2 runs in amortized O(y) time
• OP3 runs in amortized O(z) time

Meaning:
For any sequence of operations with

#OP1 = n1, #OP2 = n2, #OP3 = n3,
worst-case total time = O(n1x + n2y + n3z)

8

Binary Counter
•Let us see another example of

implementing a k-bit binary counter

•At the beginning, count is 0, and the
counter will be like (assume k=5):

00000

which is the binary representation of the
count

9

Binary Counter
•When the counter is incremented, the

content will change
•Example: content of counter when:

10100

count = 5

01100

count = 6cost = 2

•The cost of the increment is equal to the
number of bits flipped

10

Binary Counter
Special case:

When all bits in the counter is 1,
an increment resets all bits to 0

11111

count = MAX

00000

count = 0cost = k

•The cost of the corresponding increment
is equal to k, the number of bits flipped

11

Binary Counter
•Suppose we have performed n increments

Questions:

•Worst-case time of an increment ?
Ans. O(k) time

•Total time of n operations in worst case ?
Ans. O(nk) time [correct, but not tight]

12

Binary Counter
Let us denote the bits in the counter by

b0, b1, b2, …, bk-1,
starting from the right

b0b1b2b3b4

Observation:
bi is flipped only once in every 2i increments

Precisely, bi is flipped at xth increment x is divisible by 2i

13

Amortized Cost
•So, for n increments, the total cost is:

i=0 to k b n / 2i c

· i=0 to k (n / 2i) 2n

•By dividing total cost with #increments,

 amortized cost of increment = O(1)

14

Aggregate Method
•The computation of amortized cost of an

operation in super stack or binary counter
follows similar steps:

1. Find total cost (thus, an “aggregation”)
2. Divide total cost by #operations

This method is called Aggregate Method

15

Remarks
•In amortized analysis, the amortized cost

to perform an operation is computed by
the average over all performed operations

•There is a different topic called average-
case analysis, which studies average
performance over all inputs

•Both are useful, but they just study
different things

16

Example: Average-Case Analysis
•Consider building a binary search tree for

n numbers with random insertion order
•Final height varies on insertion order

•Suppose each of the n! possible insertion
orders is equally likely to be chosen

•Then, we may be able to compute the
average height of the tree
•average is over all insertion orders

17

•In fact, we can show that
average height = (log n)

and very likely, height = (log n)
•So, we can say

average search time = (log n)

•However, we cannot say
amortized search time = (log n) … why?

Example: Average-Case Analysis

