CS4311 Design and Analysis of Algorithms

Lecture 14: Amortized Analysis I

1

About this lecture

- Given a data structure, amortized analysis studies in a sequence of operations, the average time to perform an operation
- Introduce amortized cost of an operation
- Three Methods for the Same Purpose
 - (1) Aggregate Method
 - (2) Accounting Method
 - (3) Potential Method

This Lecture

Super Stack

- Your friend has created a super stack, which, apart from PUSH/POP, supports:
 SUPER-POP(k): pop top k items
- Suppose SUPER-POP never pops more items than current stack size
- The time for SUPER-POP is O(k)
- The time for PUSH/POP is O(1)

Super Stack

- Suppose we start with an empty stack, and we have performed n operations
 - But we don't know the order

Questions:

- Worst-case time of a SUPER-POP ?
 Ans. O(n) time [why?]
- Total time of n operations in worst case ?
 Ans. O(n²) time [correct, but not tight]

Super Stack

- Though we don't know the order of the operations, we still know that:
 - There are n PUSH/POP
 - \rightarrow Time spent on PUSH/POP = O(n)
 - # items popped by all SUPER-POP cannot exceed total # items ever pushed into stack

→ Time spent on SUPER-POP = O(n)So, total time of n operations = O(n) !!!

Amortized Cost

• So far, there are no assumptions on n and the order of operations. Thus, we have:

For any n and any sequence of n operations, worst-case total time = O(n)

- We can think of each operation performs in average O(n) / n = O(1) time
- → We say amortized cost = O(1) per operation (or, each runs in amortized O(1) time)

Amortized Cost

- In general, we can say something like:
 - OP_1 runs in amortized O(x) time
 - OP_2 runs in amortized O(y) time
 - OP_3 runs in amortized O(z) time

Meaning:

For any sequence of operations with $\#OP_1 = n_1, \#OP_2 = n_2, \#OP_3 = n_3,$ worst-case total time = $O(n_1x + n_2y + n_3z)$

- Let us see another example of implementing a k-bit binary counter
- At the beginning, count is 0, and the counter will be like (assume k=5):

which is the binary representation of the count

- When the counter is incremented, the content will change
- Example: content of counter when:

• The cost of the increment is equal to the number of bits flipped

Binary Counter

Special case:

When all bits in the counter is 1, an increment resets all bits to 0

• The cost of the corresponding increment is equal to k, the number of bits flipped

• Suppose we have performed n increments

Questions:

- Worst-case time of an increment ?
 Ans. O(k) time
- Total time of n operations in worst case ?
 Ans. O(nk) time [correct, but not tight]

Let us denote the bits in the counter by $b_0, b_1, b_2, ..., b_{k-1},$ starting from the right b_4, b_3, b_2, b_1, b_0

Observation: b_i is flipped only once in every 2ⁱ increments

Precisely, b_i is flipped at x^{th} increment $\Leftrightarrow x$ is divisible by 2^i

Amortized Cost

• So, for n increments, the total cost is:

$$\sum_{i=0 \text{ to } k} \left[n / 2^{i} \right]$$

$$< \sum_{i=0 \text{ to } k} \left(n / 2^{i} \right) < 2n$$

- By dividing total cost with #increments,
- \rightarrow amortized cost of increment = O(1)

Aggregate Method

The computation of amortized cost of an operation in super stack or binary counter follows similar steps:

Find total cost (thus, an "aggregation")
 Divide total cost by #operations

This method is called Aggregate Method

Remarks

- In amortized analysis, the amortized cost to perform an operation is computed by the average over all performed operations
- There is a different topic called averagecase analysis, which studies average performance over all inputs
- Both are useful, but they just study different things

Example: Average-Case Analysis

- Consider building a binary search tree for n numbers with random insertion order
 - Final height varies on insertion order
- Suppose each of the n! possible insertion orders is equally likely to be chosen
- Then, we may be able to compute the average height of the tree
 - average is over all insertion orders

Example: Average-Case Analysis

• In fact, we can show that

average height = $\Theta(\log n)$ and very likely, height = $\Theta(\log n)$

- So, we can say
 average search time = Θ(log n)
- However, we cannot say amortized search time = $\Theta(\log n)$... why?