CS4311
Design and Analysis of Algorithms

Lecture 14: Amortized Analysis I
About this lecture

- Given a data structure, amortized analysis studies in a sequence of operations, the average time to perform an operation.
- Introduce amortized cost of an operation.
- Three Methods for the Same Purpose
 1. Aggregate Method
 2. Accounting Method
 3. Potential Method

This Lecture
Super Stack

- Your friend has created a super stack, which, apart from PUSH/POP, supports:
 \[\text{SUPER-POP}(k): \text{pop top } k \text{ items} \]
- Suppose SUPER-POP never pops more items than current stack size
- The time for SUPER-POP is \(O(k) \)
- The time for PUSH/POP is \(O(1) \)
Suppose we start with an empty stack, and we have performed n operations

• But we don’t know the order

Questions:

• Worst-case time of a SUPER-POP?
 Ans. $O(n)$ time [why?]

• Total time of n operations in worst case?
 Ans. $O(n^2)$ time [correct, but not tight]
Super Stack

• Though we don’t know the order of the operations, we still know that:
 • There are n PUSH/POP
 \[\Rightarrow \text{Time spent on PUSH/POP} = O(n) \]
 • # items popped by all SUPER-POP cannot exceed total # items ever pushed into stack
 \[\Rightarrow \text{Time spent on SUPER-POP} = O(n) \]

So, total time of n operations = $O(n)$!!!
Amortized Cost

• So far, there are no assumptions on n and the order of operations. Thus, we have:

For any n and any sequence of n operations, worst-case total time = $O(n)$

• We can think of each operation performs in average $O(n)/n = O(1)$ time

→ We say amortized cost = $O(1)$ per operation (or, each runs in amortized $O(1)$ time)
Amortized Cost

- In general, we can say something like:
 - OP_1 runs in amortized $O(x)$ time
 - OP_2 runs in amortized $O(y)$ time
 - OP_3 runs in amortized $O(z)$ time

Meaning:

For any sequence of operations with

- $\#OP_1 = n_1$, $\#OP_2 = n_2$, $\#OP_3 = n_3$,

worst-case total time = $O(n_1x + n_2y + n_3z)$
Binary Counter

- Let us see another example of implementing a k-bit binary counter.
- At the beginning, count is 0, and the counter will be like (assume $k=5$):

$$0 \ 0 \ 0 \ 0 \ 0$$

which is the binary representation of the count.
Binary Counter

• When the counter is incremented, the content will change
• Example: content of counter when:

 \[
 \begin{array}{cccc}
 0 & 0 & 1 & 0 & 1 \\
 \end{array} \quad \text{count} = 5
 \begin{array}{cccc}
 0 & 0 & 1 & 1 & 0 \\
 \end{array} \quad \text{cost} = 2 \quad \text{count} = 6
 \]

• The cost of the increment is equal to the number of bits flipped
Binary Counter

Special case:

When all bits in the counter is 1, an increment resets all bits to 0

\[
\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\quad \rightarrow \quad
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{c}
\text{count} = \text{MAX} \\
\text{cost} = k \\
\text{count} = 0 \\
\end{array}
\]

- The cost of the corresponding increment is equal to k, the number of bits flipped
Binary Counter

• Suppose we have performed n increments

Questions:

• Worst-case time of an increment?

 Ans. $O(k)$ time

• Total time of n operations in worst case?

 Ans. $O(nk)$ time [correct, but not tight]
Binary Counter

Let us denote the bits in the counter by $b_0, b_1, b_2, \ldots, b_{k-1}$, starting from the right

Observation:

b_i is flipped only once in every 2^i increments

Precisely, b_i is flipped at x^{th} increment $\iff x$ is divisible by 2^i
Amortized Cost

• So, for \(n \) increments, the total cost is:

\[
\sum_{i=0}^{k} \left\lfloor \frac{n}{2^i} \right\rfloor
\]

\[
\leq \sum_{i=0}^{k} \left(\frac{n}{2^i} \right) < 2n
\]

• By dividing total cost with \#increments,

\[\Rightarrow \text{amortized cost of increment} = O(1)\]
Aggregate Method

• The computation of amortized cost of an operation in super stack or binary counter follows similar steps:

1. Find total cost (thus, an “aggregation”)
2. Divide total cost by #operations

This method is called Aggregate Method
Remarks

• In amortized analysis, the amortized cost to perform an operation is computed by the average over all performed operations.

• There is a different topic called average-case analysis, which studies average performance over all inputs.

• Both are useful, but they just study different things.
Example: Average-Case Analysis

• Consider building a binary search tree for \(n\) numbers with random insertion order
 • Final height varies on insertion order

• Suppose each of the \(n!\) possible insertion orders is equally likely to be chosen

• Then, we may be able to compute the average height of the tree
 • average is over all insertion orders
Example: Average-Case Analysis

- In fact, we can show that
 \[\text{average height} = \Theta(\log n) \]
 and very likely, \[\text{height} = \Theta(\log n) \]
- So, we can say
 \[\text{average search time} = \Theta(\log n) \]
- However, we cannot say
 \[\text{amortized search time} = \Theta(\log n) \] ... why?