
1

CS4311
Design and Analysis of

Algorithms

Lecture 11: Dynamic Programming III

2

•We will see more examples today

About this lecture

3

Writing a Translation Program

•Suppose we want to design a program to
translate English texts on food to Chinese

•First problem to solve:
Given an English word, can we quickly
search for its Chinese equivalent?

•E.g., Apple  蘋果, Banana 香蕉,
Pizza 比薩, Burger 漢堡,
Hotdog熱狗, Spaghetti 意麵

4

•However, some English words may not be
common to have a Chinese equivalent
•In this case, we report not found

•E.g., Biryani (a South Asian dish)

Burrito (a common Mexican food)

Jambalaya (a famous Louisiana dish)

Okonomiyaki (a kind of Japanese pizza)

Writing a Translation Program

5

•Let n = # of English words in our
database with Chinese equivalent

Solution 1: Hashing
•Good, but need a good hash function

Solution 2: Balanced Binary Search Tree
•worst-case O(log n) time per query

Writing a Translation Program

6

Balanced Binary Search Tree

apple burger

banana

hotdog

pizza

spaghetti

Keys = words in the database

7

•In real life, different words do not
appear with the same frequencies
E.g., apple may be more often than pizza

•Also, there may be different frequencies
for the unsuccessful searches
E.g., we may unluckily search for a word in

the range (hotdog, pizza) more often
than in the range (spaghetti, +1)

Writing a Translation Program

8

•Suppose your friend in Google gives you
probabilities of what a search will be:

= apple

= banana

0.21

apple 0.01

(apple, banana) 0.10

0.18

= burger 0.01

0.05

(burger, hotdog) 0.12

(banana, burger)

= hotdog

= pizza

0.02

(hotdog, pizza) 0.04

0.04

= spaghetti 0.07

0.11(pizza, spaghetti)

0.04spaghetti

9

•Given these probabilities, we may want
words that are searched more frequently
to be nearer the root of the search tree

burger

hotdog

apple

banana

pizza

spaghetti

This tree has better expected performance

10

•We can modify the search tree slightly
(by adding dummy leaves), and define the
expected search time as follows:

•Let k1 k2 …kn denote the n keys,
which correspond to the internal nodes

•Let d0 d1 d2 …dn be dummy keys for
ranges of the unsuccessful search
 dummy keys correspond to leaves

Expected Search Time

11

k3

k4

k1

k2

k5

k6d0 d1

d2 d3

d4 d5 d6

Search tree of Page 9 after modification

12

Lemma: Based on the modified search tree:
•when we search for a word ki,

search time = depth(ki) + 1

•when we search for a word in range dj,
search time = depth(dj) + 1

Expected Search Time

13

•Let pi = Pr(ki is searched)
•Let qj = Pr(word in dj is searched)

 i pi + j qj = 1

Then, expected search time

= i pi (depth(ki) + 1) + j qj (depth(dj) + 1)

= 1 + i pi depth(ki) + j qj depth(dj)

Expected Search Time

14

Question:
Given the probabilities pi and qj,
can we construct a binary search tree
whose expected search time is minimized?

Optimal Binary Search Tree

Such a search tree is called an
Optimal Binary Search Tree

15

Let T = optimal BST for the keys
(ki, ki+1, …, kj; di-1, di, …, dj).

Let L and R be its left and right subtrees.

Lemma: Suppose kr is the root of T. Then,
• L must be an optimal BST for the keys

(ki , ki+1, …, kr-1; di-1, di, …, dr-1)
• R must be an optimal BST for the keys

(kr+1, kr+2, …, kj; dr, dr+1, …, dj)

Optimal Substructure

16

Let ei,j denote expected search time within
an optimal BST for the keys

(ki, ki+1, …, kj; di-1, di, …, dj)
 ei,i-1 = Pr(di-1) * 1 = qi-1

Let wi,j denote the sum of the probabilities
of the keys (ki, ki+1, …, kj; di-1, di, …, dj)

= s=i to j ps + t=i-1 to j qt

 wi,i-1 = Pr(di-1) = qi-1

Optimal Substructure

17

Optimal Substructure
Lemma: For any j ¸ i,

ei,j = minr { pr + ei,r-1 + wi,r-1 + er+1,j + wr+1,j
= minr { ei,r-1 + er+1,j + wi,j }

kr Contribute
pr

Contribute
ei,r-1

Contribute
er+1,j

Contribute
wi,r-1

Contribute wr+1, j

18

Define a function Compute_E(i,j) as follows:
Compute_E(i, j) /* Finding ei,j */

1. if (i == j+1) return qj;
2. m = 1;
3. for (r = i, i+1, …, j) {

g = Compute_E(i,r-1) + Compute_E(r+1,j) + wi,j ;
if (g m) m = g;
}

4. return m ;

Optimal Binary Search Tree

19

Optimal Binary Search Tree
Question: We want to get Compute_E(1,n)…

What is its running time?

•Similar to Matrix-Chain Multiplication, the
recursive function runs in (3n) time

•Also it will examine at most once for all
possible binary search tree

 Running time = O(C(2n-2,n-1)/n)

Catalan Number

20

Overlapping Subproblems
Here, we can see that :

To Compute_E(i,j) and Compute_E(i,j+1),
there are many COMMON subproblems:
Compute_E(i,i+1), …, Compute_E(i,j-1)

So, in our recursive algorithm, there are
many redundant computations !

Question: Can we avoid it ?

21

Bottom-Up Approach
•Let us create a 2D table E to store all ei,j

values once they are computed
•Let us also create a 2D table W to store

all wi,j

We first compute all entries in W.
Next, we compute ei,j for j-i = 0,1,2,…,n-1

22

BottomUp_E() /* Finding min #operations */

1. Fill all entries of W
2. for j = 1, 2, …, n, set E[j+1, j] = qj ;
3. for (length = 0,1,2,…, n-1)

Compute E[i,i+length] for all i;
// From W and E[x,y] with |x-y| < length

4. return E[1,n] ;

Running Time = (n3)

Bottom-Up Approach

23

Remarks
•Again, a slight change in the algorithm

allows us to get the exact structure of
the optimal binary search tree

•Also, we can make minor changes to the
recursive algorithm and obtain a memoized
version (whose running time is O(n3))

