CS4311
Design and Analysis of Algorithms

Lecture 11: Dynamic Programming III
About this lecture

• We will see more examples today
Writing a Translation Program

• Suppose we want to design a program to translate English texts on food to Chinese

• First problem to solve:

 Given an English word, can we quickly search for its Chinese equivalent?

• E.g., Apple \rightarrow 蘋果, Banana \rightarrow 香蕉, Pizza \rightarrow 比薩, Burger \rightarrow 漢堡, Hotdog \rightarrow 熱狗, Spaghetti \rightarrow 意麺
Writing a Translation Program

• However, some English words may not be common to have a Chinese equivalent
 • In this case, we report not found

• E.g., Biryani (a South Asian dish)
 Burrito (a common Mexican food)
 Jambalaya (a famous Louisiana dish)
 Okonomiyaki (a kind of Japanese pizza)
Writing a Translation Program

• Let $n = \#$ of English words in our database with Chinese equivalent

Solution 1: Hashing
 • Good, but need a good hash function

Solution 2: Balanced Binary Search Tree
 • worst-case $O(\log n)$ time per query
Balanced Binary Search Tree

Keys = words in the database
Writing a Translation Program

• In real life, different words do not appear with the same frequencies
 E.g., apple may be more often than pizza

• Also, there may be different frequencies for the unsuccessful searches
 E.g., we may unluckily search for a word in the range (hotdog, pizza) more often than in the range (spaghetti, $+\infty$)
• Suppose your friend in Google gives you probabilities of what a search will be:

<table>
<thead>
<tr>
<th></th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>< apple</td>
<td>0.01</td>
</tr>
<tr>
<td>= apple</td>
<td>0.21</td>
</tr>
<tr>
<td>(apple, banana)</td>
<td>0.10</td>
</tr>
<tr>
<td>= banana</td>
<td>0.18</td>
</tr>
<tr>
<td>(banana, burger)</td>
<td>0.05</td>
</tr>
<tr>
<td>= burger</td>
<td>0.01</td>
</tr>
<tr>
<td>(burger, hotdog)</td>
<td>0.12</td>
</tr>
<tr>
<td>= hotdog</td>
<td>0.02</td>
</tr>
<tr>
<td>(hotdog, pizza)</td>
<td>0.04</td>
</tr>
<tr>
<td>= pizza</td>
<td>0.04</td>
</tr>
<tr>
<td>(pizza, spaghetti)</td>
<td>0.11</td>
</tr>
<tr>
<td>= spaghetti</td>
<td>0.07</td>
</tr>
<tr>
<td>> spaghetti</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Given these probabilities, we may want words that are searched more frequently to be nearer the root of the search tree.

This tree has better expected performance.
Expected Search Time

• We can modify the search tree slightly (by adding dummy leaves), and define the expected search time as follows:

• Let $k_1 < k_2 < ... < k_n$ denote the n keys, which correspond to the internal nodes

• Let $d_0 < d_1 < d_2 < ... < d_n$ be dummy keys for ranges of the unsuccessful search

⇒ dummy keys correspond to leaves
Search tree of Page 9 after modification
Expected Search Time

Lemma: Based on the modified search tree:

- when we search for a word k_i,
 search time = $\text{depth}(k_i) + 1$

- when we search for a word in range d_j,
 search time = $\text{depth}(d_j) + 1$
Expected Search Time

• Let \(p_i = \text{Pr}(k_i \text{ is searched}) \)
• Let \(q_j = \text{Pr}(\text{word in } d_j \text{ is searched}) \)

\[\sum_i p_i + \sum_j q_j = 1 \]

Then, expected search time

\[= \sum_i p_i (\text{depth}(k_i) + 1) + \sum_j q_j (\text{depth}(d_j) + 1) \]

\[= 1 + \sum_i p_i \text{ depth}(k_i) + \sum_j q_j \text{ depth}(d_j) \]
Question:
Given the probabilities \(p_i \) and \(q_j \), can we construct a binary search tree whose expected search time is minimized?

Such a search tree is called an Optimal Binary Search Tree
Optimal Substructure

Let $T = \text{optimal BST for the keys}$

$(k_i, k_{i+1}, \ldots, k_j; d_{i-1}, d_i, \ldots, d_j)$. Let L and R be its left and right subtrees.

Lemma: Suppose k_r is the root of T. Then,

- L must be an optimal BST for the keys
 $(k_i, k_{i+1}, \ldots, k_{r-1}; d_{i-1}, d_i, \ldots, d_{r-1})$
- R must be an optimal BST for the keys
 $(k_{r+1}, k_{r+2}, \ldots, k_j; d_r, d_{r+1}, \ldots, d_j)$
Optimal Substructure

Let $e_{i,j}$ denote expected search time within an optimal BST for the keys

$$(k_i, k_{i+1}, \ldots, k_j; d_{i-1}, d_i, \ldots, d_j)$$

$\Rightarrow e_{i,i-1} = Pr(d_{i-1}) \times 1 = q_{i-1}$

Let $w_{i,j}$ denote the sum of the probabilities of the keys $(k_i, k_{i+1}, \ldots, k_j; d_{i-1}, d_i, \ldots, d_j)$

$$= \sum_{s=i}^{j} p_s + \sum_{t=i-1}^{j} q_t$$

$\Rightarrow w_{i,i-1} = Pr(d_{i-1}) = q_{i-1}$
Lemma: For any $j \geq i$,

$$e_{i,j} = \min_r \{ p_r + e_{i,r-1} + w_{i,r-1} + e_{r+1,j} + w_{r+1,j} \}$$

$$= \min_r \{ e_{i,r-1} + e_{r+1,j} + w_{i,j} \}$$

Contribute $w_{i,r-1}$

Contribute p_r

Contribute $e_{i,r-1}$

Contribute $e_{r+1,j}$

Contribute $w_{r+1,j}$
Define a function $\text{Compute}_E(i, j)$ as follows:

$\text{Compute}_E(i, j) \quad /* \text{Finding } e_{i,j} */$

1. if ($i == j+1$) return q_j;
2. $m = \infty$;
3. for ($r = i, i+1, ..., j$) {

 $g = \text{Compute}_E(i, r-1) + \text{Compute}_E(r+1, j) + w_{i,j}$;

 if ($g < m$) $m = g$;
 }
4. return m ;
Optimal Binary Search Tree

Question: We want to get Compute_E(1,n)...
What is its running time?

• Similar to Matrix-Chain Multiplication, the recursive function runs in \(\Omega(3^n) \) time
• Also it will examine at most once for all possible binary search tree

\[\text{Running time} = O(C(2n-2,n-1)/n) \]
Overlapping Subproblems

Here, we can see that:

To Compute_E(i,j) and Compute_E(i,j+1), there are many COMMON subproblems:
Compute_E(i,i+1), ..., Compute_E(i,j-1)

So, in our recursive algorithm, there are many redundant computations!

Question: Can we avoid it?
Bottom-Up Approach

• Let us create a 2D table E to store all $e_{i,j}$ values once they are computed
• Let us also create a 2D table W to store all $w_{i,j}$

We first compute all entries in W.
Next, we compute $e_{i,j}$ for $j-i = 0,1,2,...,n-1$
Bottom-Up Approach

BottomUp_E() /* Finding min #operations */

1. Fill all entries of W
2. for $j = 1, 2, ..., n$, set $E[j+1, j] = q_j$
3. for (length = 0, 1, 2, ..., $n-1$)
 Compute $E[i, i+\text{length}]$ for all i;
 // From W and $E[x, y]$ with $|x-y| < \text{length}$
4. return $E[1, n]$;

Running Time = $\Theta(n^3)$
Remarks

• Again, a slight change in the algorithm allows us to get the exact structure of the optimal binary search tree.

• Also, we can make minor changes to the recursive algorithm and obtain a memoized version (whose running time is $O(n^3)$).