CS4311

Design and Analysis of
Algorithms

Lecture 11: Dynamic Programming ITT

About this lecture

+ We will see more examples today

Writing a Translation Program

» Suppose we want to design a program to
translate English texts on food to Chinese

* First problem to solve:

Given an English word, can we quickly
search for its Chinese equivalent?

. E.g., Apple - 5%;:?5:, Banana 2> % E,

Pizza > ‘' &, Burger - & F,
Hotdog > #.J3, Spaghetti 2> & &

3

Writing a Translation Program

» However, some English words may not be
common to have a Chinese equivalent

» In this case, we report not found

» E.g., Biryani (a South Asian dish)

Burrito (a common Mexican food)
Jambalaya (a famous Louisiana dish)
Okonomiyaki (a kind of Japanese pizza)

Writing a Translation Program

*+ Let n = # of English words in our
database with Chinese equivalent

Solution 1: Hashing
* Good, but need a good hash function

Solution 2: Balanced Binary Search Tree
» worst-case O(log n) time per query

Balanced Binary Search Tree

hotdog
banana pizza
apple burger spaghetti

Keys = words in the database

Writing a Translation Program

- Inreal life, different words do not
appear with the same frequencies

E.g., apple may be more often than pizza

+ Also, there may be different frequencies
for the unsuccessful searches

E.g., we may unluckily search for a word in
the range (hotdog, pizza) more often
than in the range (spaghetti, +0)

Suppose your friend in Google gives you
probabilities of what a search will be:

< apple 0.01 = hotdog 0.02
= apple 0.21 (hotdog, pizza) 0.04
(apple, banana) 0.10 = pizza 0.04
= banana 0.18 (pizza, spaghetti) 0.11
(banana, burger) 0.05 = spaghetti 0.07
= burger 0.01 > spaghetti 0.04

(burger, hotdog) 0.12

* Given these probabilities, we may want
words that are searched more frequently
to be nearer the root of the search tree

banana
/ \
apple pizza
~ ~
hotdog spaghetti
d
burger

This tree has better expected performance
9

Expected Search Time

* We can modify the search tree slightly
(by adding dummy leaves), and define the
expected search fime as follows:

+ Let k; <k, < ... < k,denote the n keys,
which correspond to the internal nodes

+ Let dy<d;<d, <..<d, be dummy keys for
ranges of the unsuccessful search

= dummy keys correspond to leaves

10

B (k) (k)
(o) () (&) (e

Search tree of Page 9 after modification

11

Expected Search Time

Lemma: Based on the modified search tree:
* when we search for a word k.,
search time = depth(k,) + 1

* when we search for a word in range d;,
search time = depth(d;) + 1

12

Expected Search Time

* Let p, = Pr(k; is searched)
+ Let q; = Pr(word in d; is searched)

> 2 p;* Zj q;= 1

Then, expected search time
= p; (depth(k;) + 1) + Zj q; (depth(d;) + 1)
=1+ 2 p, depth(k.) + ZJ- q; depth(d,)

13

Optimal Binary Search Tree

Question:
Given the probabilities p; and g;,

can we construct a binary search tree
whose expected search time is minimized?

Such a search tree is called an
Optimal Binary Search Tree

14

Optimal Substructure

Let T = optimal BST for the keys
(ki, Kig, -, Ky dig, i, o, dy).
Let L and R be its left and right subtrees.

Lemma: Suppose k. is the root of T. Then,

L must be an optimal BST for the keys
(ki King, - Koo dig, di, o, dig)

R must be an optimal BST for the keys
(kr‘+11 kr'+21 e kJ' dr" dr+1' R dJ)

15

Optimal Substructure

Let e;; denote expected search time within

an optimal BST for the keys
(ki, Kigs o Ky dig, i, o, dy)

9elll Pr(dll)*l qll

Let w,, denote the sum of the probabm‘rles
of the keys (ki, Ky, ., ki diy, i, ..., d)

= ZSITOJPS Z‘r|1’rojq’r
9Wlll Pr‘(dl 1) qll

16

Optimal Substructure

Lemma: Forany j > i,

ei,j = min, { Prt €pr1* Wipgt er'+1,j T Wr'+1fj
= min, { €ir1* er'+1,j T Wifj
Contribute - N
W; g ¥ onfribute
Pr
AN
’ Contribute
INg - onerl
Contribute N r+l,]
ei’r_l == Contribute Wr‘+1,j 17

Optimal Binary Search Tree

Define a function Compute_E(i,j) as follows:
Compute_E(i, j) /* Finding e, |

J

* /

1. if (i == j*1) return q;;

2. m= oo,

3. for(r=i,i+l, .., j){
g = Compute_E(i,r-1) + Compute_E(r+1,j) + w;; ;
if (g<m) m=g;
}

4. return m ;

18

Optimal Binary Search Tree

Question: We want to get Compute_E(1,n)...
What is its running time?

» Similar fo Matrix-Chain Multiplication, the
recursive function runs in £2(3") time

- Also it will examine at most once for all
possible binary search tree

= Running time = O(€(2n-2,n-1)/n)

Catalan Number .

Overlapping Subproblems

Here, we can see that :

To Compute_E(i,j) and Compute_E(i,j+1),
there are many COMMON subproblems:

Compute_E(i,i+1), ..., Compute_E(i, j-1)

So, in our recursive algorithm, there are
many redundant computations |

Question: Can we avoid it ?

20

Bottom-Up Approach

+ Let us create a 2D table E to store all e;
values once they are computed

- Let us also create a 2D table W to store

all w;;

We first compute all entries in W.
Next, we compute e;; for j-i=0,1,2,.. n-1

21

Bottom-Up Approach

BottomUp_E() /* Finding min #operations */
1. Fill all entries of W
2.for j=1,2,.,n, set E[j+],j]= q; .
3. for (length=0,12,..., n-1)
Compute E[i,i+length] for all i;

// From W and E[x,y] with |x-y| < length

4. return E[1,n];

Running Time = ©(n3)

22

Remarks

Again, a slight change in the algorithm
allows us to get the exact structure of
the optimal binary search tree

Also, we can make minor changes to the
recursive algorithm and obtain a memoized
version (whose running time is O(n3))

23

