CS4311 Design and Analysis of Algorithms

Lecture 11: Dynamic Programming III

1

About this lecture

• We will see more examples today

- Suppose we want to design a program to translate English texts on food to Chinese
- First problem to solve:
 Given an English word, can we quickly search for its Chinese equivalent?
- E.g., Apple → 蘋果, Banana → 香蕉,
 Pizza → 比薩, Burger → 漢堡,
 Hotdog→ 熱狗, Spaghetti → 意麵

- However, some English words may not be common to have a Chinese equivalent
 - In this case, we report not found
- E.g., Biryani (a South Asian dish) Burrito (a common Mexican food) Jambalaya (a famous Louisiana dish) Okonomiyaki (a kind of Japanese pizza)

- Let n = # of English words in our database with Chinese equivalent
- Solution 1: Hashing
 - Good, but need a good hash function

Solution 2: Balanced Binary Search Tree

worst-case O(log n) time per query

Balanced Binary Search Tree

Keys = words in the database

- In real life, different words do not appear with the same frequencies
 E.g., apple may be more often than pizza
- Also, there may be different frequencies for the unsuccessful searches

E.g., we may unluckily search for a word in the range (hotdog, pizza) more often than in the range (spaghetti, $+\infty$)

 Suppose your friend in Google gives you probabilities of what a search will be:

< apple	0.01	= hotdog	0.02
= apple	0.21	(hotdog, pizza)	0.04
(apple, banana)	0.10	= pizza	0.04
= banana	0.18	(pizza, spaghetti)	0.11
(banana, burger)	0.05	= spaghetti	0.07
= burger	0.01	> spaghetti	0.04
(burger hotdog)	012		

 Given these probabilities, we may want words that are searched more frequently to be nearer the root of the search tree

This tree has better expected performance

Expected Search Time

- We can modify the search tree slightly (by adding dummy leaves), and define the expected search time as follows:
- Let $k_1 < k_2 < ... < k_n$ denote the n keys, which correspond to the internal nodes
- Let d₀ < d₁ < d₂ < ... < d_n be dummy keys for ranges of the unsuccessful search
 → dummy keys correspond to leaves

Search tree of Page 9 after modification

Expected Search Time

Lemma: Based on the modified search tree:

- when we search for a word k_i,
 search time = depth(k_i) + 1
- when we search for a word in range d_j,
 search time = depth(d_j) + 1

Expected Search Time

- Let p_i = Pr(k_i is searched)
- Let $q_j = Pr(word in d_j is searched)$

$$\Rightarrow \qquad \sum_{i} p_{i} + \sum_{j} q_{j} = 1$$

Then, expected search time

= $\Sigma_i p_i (depth(k_i) + 1) + \Sigma_j q_j (depth(d_j) + 1)$

= 1 + $\Sigma_i p_i \operatorname{depth}(k_i) + \Sigma_j q_j \operatorname{depth}(d_j)$

Optimal Binary Search Tree

Question:

Given the probabilities p_i and q_j , can we construct a binary search tree whose expected search time is minimized?

> Such a search tree is called an Optimal Binary Search Tree

Optimal Substructure

Let T = optimal BST for the keys $(k_i, k_{i+1}, ..., k_j; d_{i-1}, d_i, ..., d_j).$ Let L and R be its left and right subtrees.

Lemma: Suppose k_r is the root of T. Then,

- L must be an optimal BST for the keys $(k_i, k_{i+1}, ..., k_{r-1}; d_{i-1}, d_i, ..., d_{r-1})$
- R must be an optimal BST for the keys $(k_{r+1}, k_{r+2}, ..., k_j; d_r, d_{r+1}, ..., d_j)$

Optimal Substructure

Let e_{i,j} denote expected search time within an optimal BST for the keys

$$(k_i, k_{i+1}, ..., k_j; d_{i-1}, d_i, ..., d_j)$$

 $\Rightarrow e_{i,i-1} = Pr(d_{i-1}) * 1 = q_{i-1}$

Let $w_{i,j}$ denote the sum of the probabilities of the keys (k_i , k_{i+1} , ..., k_j ; d_{i-1} , d_i , ..., d_j)

$$= \sum_{s=i \text{ to } j} p_s + \sum_{t=i-1 \text{ to } j} q_t$$

$$\Rightarrow w_{i,i-1} = \Pr(d_{i-1}) = q_{i-1}$$

Optimal Binary Search Tree

Define a function Compute_E(i,j) as follows:

Compute_E(i, j) /* Finding e_{i,j} */

```
1. if (i == j+1) return q<sub>j</sub>;
2. m = ∞;
3. for (r = i, i+1, ..., j) {
  g = Compute_E(i,r-1) + Compute_E(r+1,j) + w<sub>i,j</sub>;
  if (g < m) m = g;
  }
```

4. return m;

Optimal Binary Search Tree Question: We want to get Compute_E(1,n)... What is its running time?

- Similar to Matrix-Chain Multiplication, the recursive function runs in $\Omega(\mathbf{3^n})$ time
- Also it will examine at most once for all possible binary search tree
- $\Rightarrow Running time = O(C(2n-2,n-1)/n)$

Overlapping Subproblems

Here, we can see that :

To Compute_E(i,j) and Compute_E(i,j+1), there are many COMMON subproblems: Compute_E(i,i+1), ..., Compute_E(i,j-1)

So, in our recursive algorithm, there are many redundant computations ! Question: Can we avoid it ?

Bottom-Up Approach

- Let us create a 2D table E to store all $e_{i,j}$ values once they are computed
- Let us also create a 2D table W to store all $w_{i,j}$

We first compute all entries in W. Next, we compute $e_{i,j}$ for j-i = 0,1,2,...,n-1

Bottom-Up Approach

BottomUp_E() /* Finding min #operations */

- 1. Fill all entries of W
- 2. for j = 1, 2, ..., n, set $E[j+1, j] = q_j$;
- 3. for (length = 0, 1, 2, ..., n-1)

Compute E[i,i+length] for all i;

- // From W and E[x,y] with |x-y| < length
- 4. return E[1,n];

Running Time = $\Theta(n^3)$

Remarks

- Again, a slight change in the algorithm allows us to get the exact structure of the optimal binary search tree
- Also, we can make minor changes to the recursive algorithm and obtain a memoized version (whose running time is O(n³))