
1

CS4311
Design and Analysis of

Algorithms

Lecture 10: Dynamic Programming II

2

•We will see more examples today

About this lecture

3

Matrix Multiplication

•Let A be a matrix of dimension p £ q
and B be a matrix of dimension q £ r

•Then, if we multiply matrices A and B,
we obtain a resulting matrix C = AB
whose dimension is p £ r

•We can obtain each entry in C using q
operations in total, pqr operations

4

Matrix Multiplication
•Matrix multiplication can be defined for

more than two matrices
•Let A1, A2, …, An be a sequence of

matrices (with #columns of Ak = # rows of Ak+1)

•We can define
C = A1A2A3 …An = (…((A1A2)A3) …An)

5

Matrix Multiplication
•In fact, ((A1A2)A3) = (A1(A2A3)) so

that matrix multiplication is associative

Any way to write down the parentheses
gives the same result

E.g., (((A1A2)A3)A4) = ((A1A2)(A3A4))
= (A1((A2A3)A4)) = ((A1(A2A3))A4)
= (A1(A2(A3A4)))

6

Matrix Multiplication
Question: Why do we bother this?

Because different computation sequence
may use different number of operations!

E.g., Let the dimensions of A1, A2, A3 be:

1£100, 100£1, 1£100 , respectively

#operations to get ((A1A2)A3) = ??
#operations to get (A1(A2A3)) = ??

7

Lemma: Suppose that to multiply B1,B2,…,Bj,
the way with minimum #operations is to:
(i) first, obtain B1B2 …Bx

(ii) then, obtain Bx+1 …Bj

(iii) finally, multiply the matrices of
part (i) and part (ii)

Then, the matrices in part (i) and part (ii)
must be obtained with min #operations

Optimal Substructure

8

Let fi,j denote the min #operations to obtain
the product AiAi+1 …Aj

 fi,i = 0
Let rk and ck denote #rows and #cols of Ak

Then, we have:

Optimal Substructure

Lemma: For any j > i,

fi,j = minx { fi,x + fx+1,j + ricxcj }

9

Define a function Compute_F(i,j) as follows:
Compute_F(i, j) /* Finding fi,j */

1. if (i == j) return 0;
2. m = 1;
3. for (x = i, i+1, …, j-1) {

g = Compute_F(i,x) + Compute_F(x+1,j) + ri cx cj ;
if (g m) m = g;
}

4. return m ;

Matrix-Chain Multiplication

10

Matrix-Chain Multiplication
Question: Time to get Compute_F(1,n)?

•By substituion method, we can show that
Running time = (3n)

•On the other hand, #operations for each
possible way of writing parentheses are
computed at most once
 Running time = (C(2n-2,n-1)/n)

Catalan Number

11

Overlapping Subproblems
Here, we can see that :

To Compute_F(i,j) and Compute_F(i,j+1),
both have many COMMON subproblems:
Compute_F(i,i+1), …, Compute_F(i,j-1)

So, in our recursive algorithm, there are
many redundant computations !

Question: Can we avoid it ?

12

Bottom-Up Approach
•We notice that

(i) all fi,j are eventually computed at least
once, and

(ii) fi,j depends only on fx,y with |x-y||i-j|

•By (i), let us create a 2D table F to store
all fi,j values once they are computed

•By (ii), let us compute fi,j for j-i = 1,2,…,n-1

13

BottomUp_F() /* Finding min #operations */

1. for j = 1, 2, …, n, set F[j, j] = 0 ;
2. for (length = 1,2,…, n-1) {

Compute F[i,i+length] for all i;
// Based on F[x,y] with |x-y| < length

}
3. return F[1,n] ;

Running Time = (n3)

Bottom-Up Approach

14

Remarks
•Again, a slight change in the algorithm

allows us to get the exact sequence of
steps (or the parentheses) that achieves
the minimum number of operations

•Also, we can make minor changes to the
recursive algorithm and obtain a memoized
version (whose running time is O(n3))

