CS4311
Design and Analysis of Algorithms

Lecture 10: Dynamic Programming II
About this lecture

• We will see more examples today
Matrix Multiplication

• Let A be a matrix of dimension $p \times q$ and B be a matrix of dimension $q \times r$.

• Then, if we multiply matrices A and B, we obtain a resulting matrix $C = AB$ whose dimension is $p \times r$.

• We can obtain each entry in C using q operations \Rightarrow in total, pqr operations.
Matrix Multiplication

• Matrix multiplication can be defined for more than two matrices
• Let \(A_1, A_2, \ldots, A_n \) be a sequence of matrices (with \#columns of \(A_k = \# \) rows of \(A_{k+1} \))
• We can define
 \[
 C = A_1 A_2 A_3 \ldots A_n = (((A_1 A_2) A_3) \ldots A_n)
 \]
Matrix Multiplication

• In fact, \(((A_1A_2)A_3) = (A_1(A_2A_3))\) so that matrix multiplication is associative.

⇒ Any way to write down the parentheses gives the same result.

E.g., \(((((A_1A_2)A_3)A_4) = (((A_1A_2)(A_3A_4)))\) = \((A_1(((A_2A_3)A_4))) = (((A_1(A_2A_3))A_4))\) = \((A_1(A_2(A_3A_4))))\)
Matrix Multiplication

Question: Why do we bother this?

Because different computation sequence may use different number of operations!

E.g., Let the dimensions of A_1, A_2, A_3 be:

$1 \times 100, \ 100 \times 1, \ 1 \times 100$, respectively

#operations to get $((A_1A_2)A_3) = ??$

#operations to get $(A_1(A_2A_3)) = ??$
Lemma: Suppose that to multiply B_1, B_2, \ldots, B_j, the way with minimum number of operations is to:

(i) first, obtain $B_1B_2 \ldots B_x$

(ii) then, obtain $B_{x+1} \ldots B_j$

(iii) finally, multiply the matrices of part (i) and part (ii)

Then, the matrices in part (i) and part (ii) must be obtained with minimum number of operations
Let $f_{i,j}$ denote the min #operations to obtain the product $A_i A_{i+1} \ldots A_j$

$\Rightarrow f_{i,i} = 0$

Let r_k and c_k denote #rows and #cols of A_k

Then, we have:

Lemma: For any $j > i$,

$$f_{i,j} = \min_x \{ f_{i,x} + f_{x+1,j} + r_i c_x c_j \}$$
Matrix-Chain Multiplication

Define a function $\text{Compute_F}(i, j)$ as follows:

$\text{Compute_F}(i, j) \quad /* \text{Finding } f_{i,j} \ */$

1. if ($i == j$) return 0;
2. $m = \infty$;
3. for ($x = i, i+1, \ldots, j-1$) {

 $g = \text{Compute_F}(i, x) + \text{Compute_F}(x+1, j) + r_i c_x c_j$;

 if ($g < m$) $m = g$;

4. return m;
Matrix-Chain Multiplication

Question: Time to get Compute_F(1,n)?

• By substitution method, we can show that
 Running time = \Omega(3^n)
• On the other hand, #operations for each possible way of writing parentheses are computed at most once
 \rightarrow Running time = O(C(2n-2,n-1)/n)

Catalan Number
Overlapping Subproblems

Here, we can see that:

To Compute_F(i,j) and Compute_F(i,j+1), both have many COMMON subproblems:
Compute_F(i,i+1), ..., Compute_F(i,j-1)

So, in our recursive algorithm, there are many redundant computations!

Question: Can we avoid it?
Bottom-Up Approach

• We notice that
 (i) all \(f_{i,j} \) are eventually computed at least once, and
 (ii) \(f_{i,j} \) depends only on \(f_{x,y} \) with \(|x-y|<|i-j|\)

• By (i), let us create a 2D table \(F \) to store all \(f_{i,j} \) values once they are computed

• By (ii), let us compute \(f_{i,j} \) for \(j-i = 1,2,...,n-1 \)
Bottom-Up Approach

BottomUp_F() /* Finding min #operations */
1. for j = 1, 2, ..., n, set F[j, j] = 0;
2. for (length = 1, 2, ..., n-1) {
 Compute F[i, i+length] for all i;
 // Based on F[x, y] with |x-y| < length
}
3. return F[1, n];

Running Time = \Theta(n^3)
Remarks

• Again, a slight change in the algorithm allows us to get the exact sequence of steps (or the parentheses) that achieves the minimum number of operations.

• Also, we can make minor changes to the recursive algorithm and obtain a memoized version (whose running time is $O(n^3)$).