
1

CS4311
Design and Analysis of

Algorithms

Lecture 1: Getting Started



2

•Study a few simple algorithms for sorting
–Insertion Sort
–Selection Sort
–Merge Sort

•Show why these algorithms are correct
•Try to analyze the efficiency of these

algorithms (how fast they run)

About this lecture



3

•Input: A list of n numbers
•Output: Arrange the numbers in

increasing order

Remark: Sorting has many applications. As we
have seen before, if the list is already sorted, we
can search a number in the list faster

The Sorting Problem



4

•Operates in n rounds
•At the kth round,

–Pick up the kth element (let’s call it X)
–Compare X with the elements on its left,

starting with the (k-1)th element, the (k-2)th

element, and so on, until we see some element
(let’s call it Y) not larger than X

–Insert X after Y in the list
•if no Y is found, insert X at the beginning of the list

Question: Why is this algorithm correct?

Insertion Sort



5

•Operates in n rounds
•At the kth round,

–Find the minimum element after (k-1)th position
in the list. Let’s call this minimum element X

–Insert X at kth position in the list

Question: Why is this algorithm correct?

Selection Sort



6

•A good idea to solve a complicated problem
is: Divide it into smaller problems, and
see if we can combine the result of the
smaller problems to solve the original one

•This idea is called Divide-and-Conquer
•Can we apply this idea for sorting?

•Suppose we don’t know how to sort n
numbers, but we know how to sort a fewer
of them (say, n/2 numbers). Can this help?

Divide and Conquer



7

•Observation: If we have two sorted lists
A and B, we can “merge”them into a single
sorted list (how?)

•Merge Sort applies the divide-and-conquer
idea to sort a list as follows:
Step 1. Divide the list into two halves, A and B
Step 2. Sort A using Merge Sort (solving a

smaller problem now)
Step 3. Sort B using Merge Sort
Step 4. Merge the sorted lists of A and B

Merge Sort



8

•Which of previous algorithms is the best?
•Compare the time a computer needs to run

these algorithms
–But there are many kinds of computers !!!

•Let us assume our computer is a RAM
(random access machine), so that
–each arithmetic (such as , , , ), memory

read/write, and control (such as conditional
jump, subroutine call, return) takes constant
amount of time

Analyzing the Running Times



9

•Now, suppose that our algorithms are
described in terms of these
arithmetic/memory/control operations

•Then given an input, its running time can be
analyzed !

•One more point: we normally want to know
the trend of how our algorithm performs
on different input…The running time is
usually a function of the input size (e.g., n
in our sorting problem)

Analyzing the Running Times



10

Insertion Sort (Running Time)

The following is a pseudo-code for Insertion Sort.
Note that each line requires constant basic operations.

tj = # of times key is compared at round j



11

•Let T(n) denote the running time of
insertion sort, on an input of size n

•By combining terms, we have

T(n) = c1n + (c2+c4+c8)(n-1) + c5tj +

(c6+c7) (tj –1)
•The values of tj are dependent on the

input (not the input size)

Insertion Sort (Running Time)



12

•Best Case:
The input list is sorted, so that all tj = 1
Then, T(n) = c1n + (c2+c4+c5+c8)(n-1)

= Kn + c  linear function of n
•Worst Case:

The input list is sorted in decreasing
order, so that all tj = j-1
Then, T(n) = K1n2 + K2n + K3

 quadratic function of n

Insertion Sort (Running Time)



13

The analysis of most algorithms in our course
(and in fact, in algorithm research)
concentrates on worst-case running time

Some reasons for this:
1. Gives an upper bound of running time
2. Worst case occurs fairly often in some

problem

Remark: Some people also study the average case
running time (assume input is drawn randomly).

Worst-Case Running Time



14

Try this at home

•Can you write down the pseudo-code for
Selection Sort similarly?

•What is its running time in the worst
case?



15

Merge Sort (Running Time)

The following is a partial pseudo-code for Merge Sort.

The subroutine MERGE(A,p,q,r) is missing. Can
you complete it? Hint: You will need to create
a temporary array [Solution: textbook page 29]



16

•Let T(n) denote the running time of
merge sort, on an input of size n

•Suppose we know that Merge( ) of two
lists of total size n runs in c1n time

•Then, we can write T(n) as:
T(n) = 2T(n/2) + c1n + c2 when n > 1
T(n) = c3 when n = 1

•Solving the recurrence, we have
•T(n) = K1 n log n + K2 n + K3

Merge Sort (Running Time)



17

•Unfortunately, we still cannot tell
–Because the constants in the running times

are unknown
•However, we do know that if n is

sufficiently large, worst-case running
time of Merge Sort must become
smaller than that of Insertion Sort

•We say: Merge Sort is asymptotically
faster than Insertion Sort

Which Algorithm is Faster?


