
CS4311 Design and Analysis of Algorithms

Homework 5 (Suggested Solution)

1. (a) Ans. Let T be the edges of an MST of G, and suppose on the contrary that T does
not contain the edge e1. Consider adding e1 to T . Then, we must obtain a simple
cycle containing e1. If we now remove an arbitrary edge e other than e1 from this
cycle, the resulting edges T ∪ {e1} − {e} must still connect the graph. Moreover, it
will become a spanning tree of G, whose total weight is strictly less than the total
weight of edges in T (since w(e) > w(e1)). Thus, a contradiction occurs, and the the
proof completes.

(b) Ans. (The proof is very similar to (a).) Let T be the edges of an MST of G, and
suppose on the contrary that T does not contain the edge e2. Consider adding e2 to
T . Then, we must obtain a cycle containing e2. In addition, the cycle must contain
at least three edges, because the graph is simple. Thus, there must be an edge e whose
weight is more than e2. If we now remove this edge e other than e2, the resulting edges
T ∪ {e2} − {e} must still connect the graph. Moreover, it will become a spanning
tree of G, whose total weight is strictly less than the total weight of edges in T (since
w(e) > w(e2)). Thus, a contradiction occurs, and the the proof completes.

(c) Ans. If G may contain multiple edges, any MST must still contain e1, by the same
argument as in (a). However, an MST may not contain e2 in case e1 and e2 have
exactly the same endpoints.

2. Ans. Suppose on the contrary that some MST of G = (V,E) contains emax. Let T be the
edges of one such MST. By removing emax from T , the MST will be partitioned into two
connected components, say C and C ′.

On the other hand, from the given condition, we know that removing emax in G does not
disconnect G. This implies that must be some edge e, neither in T nor equal to emax,
joining C and C ′. Thus, the edges T −{emax} ∪ {e} will form a spanning tree of G whose
total weight is less than the total weight of edges in T (since w(emax) > w(e)). Thus, a
contradiction occurs, and the the proof completes.

3. (a) Ans. Each vertex v scans its adjacency list to find the cheapest adjacent edge ev.
The total time is thus O(|E|).

(b) Ans. When all the cheapest edge ev’s are found, we form a subgraph that includes
all ev’s, and perform a DFS on this subgraph. This takes O(|V |) time. After that, for
each connected component C in the subgraph, we relabel the vertices by a new label,
say c. This takes O(|V |) time.

The desired graph G∗ can be obtained easily from G if the endpoints of each edge in
G is now relabeled according to the new labels. This takes O(|E|) time. The total
time is thus O(|V |+ |E|).


