
CS4311 Design and Analysis of Algorithms

Homework 5

Due: 11:10 am, June 12, 2008 (before class)

1. Let G = (V, E) be a simple graph† which is weighted, undirected, and connected. Suppose
G contains a unique edge having the smallest weight. Let e1 be this edge.

(a) (30%) Prove that any minimum spanning tree of G must contain the edge e1.

(b) (30%) Suppose further that G contains a unique edge e2 having the second smallest
weight. Prove that any minimum spanning tree of G must also contain e2.

(c) (10%) What if G may contain multiple edges? That is, for vertices u and v, we may
have more than one copies of the edge (u, v), each copy may have a different weight.
Are the statements in (a) and (b) still correct?

Hint: For (a) and (b), prove by contradiction. (Consider on contrary that the MST does
not contain e1 (or e2). Can we replace some edge in the MST by this edge to reduce the
total weight?)

2. Let G = (V, E) be a simple graph which is weighted, undirected, and connected. Suppose
G contains a unique edge having the largest weight. Let emax be this edge.

(30%) Suppose removing emax in G does not disconnect G. Prove that any minimum
spanning tree of G must not contain the edge emax.

Hint: Prove by contradiction. (Consider on contrary that the MST contains emax. Can
we replace this edge by some other edge to reduce the total weight?)

3. (Bonus: 10%)§

In Lecture Notes 26, page 35, we describe Bor̊uvka’s algorithm for computing the minimum
spanning tree, where (i) in the first step, we need to compute the cheapest edge adjacent
to each vertex, and (ii) in the second step, we need to contract these cheapest edges to
produce G∗.

(a) (5%) Show how the first step can be done in O(E) time. (That means, we must avoid
sorting the edges!)

(b) (5%) For the second step, we can do by first considering the subgraph formed by the
cheapest edges, then giving a unique label to each connected components, and finally
relabeling all the edges using the labels.‡ Show that the above can be done in O(E)
time.

Hint: Consider applying DFS to find connected components.

†A simple graph is a graph that does not contain self-loops, and does not contain multi-edges.
§ Q3 is a bonus question. Total mark is calculated by: (Q1+Q2) × (100%+ Q3).
‡Precisely, an edge (u, v) will be relabeled as (x, y), where x is the label of the connected component containing

u, and y is the label of the connected component containing v.


