
CS4311 Design and Analysis of Algorithms

Homework 3 (Suggested Solution)

1. For k > 3, we can walk k steps in exactly one of the following ways:

• First reaching the (n− 1)th step, and walk one step in the last move;

• First reaching the (n− 2)th step, and walk two steps in the last move;

• First reaching the (n− 3)th step, and walk three steps in the last move.

Based on the above, the recurrence of Fk can be expressed as follows:

• F1 = 1, F2 = 2, F3 = 4;

• For k > 3, Fk = Fk−3 + Fk−2 + Fk−1.

If we compute Fk in a bottom-up manner (i.e., for k = 1, 2, . . . , n), each Fk can be computed
in O(1) time. Thus, Fn can be found in O(n) time.1

2. A combination is losing if every move leads to a winning combination (for our opponent).
Conversely, a combination is winning if at least one of the moves leads to a losing combi-
nation, since we can take such a move and force our opponent to lose.

Based on this observation, we can derive the recurrence for A(i, j) as follows:

• A(0, 0) = L;

• If every move of (i, j) leads to a winning combination, then A(i, j) = L;

Precisely, A(i, j) = L if

– A(i′, j) = W for all 0 ≤ i′ < i,

– A(i, j′) = W for all 0 ≤ j′ < j, and

– A(i− k, j − k) = W for all 1 ≤ k ≤ min{i, j};
• Otherwise, A(i, j) = W .

Since the value of A(i, j) depends only on the values of A(k, `) with (k + `) < (i + j), we
can compute A(i, j) according to the increasing order of i + j. For instance, we can first
compute A(1, 0), A(0, 1), then A(2, 0), A(1, 1), A(0, 2), then A(3, 0), A(2, 1), A(1, 2), A(0, 3),
and so on. The time to compute each A(i, j) is O(i + j), which is O(n).

As x and y are at most n, to obtain A(x, y), there are at most O(n2) entries of A to be
computed. The total time to compute all such entries is thus O(n3).

3. Let s be the rightmost (farthest) gas station within the first n km from SF. Then, we can
show the following:

Lemma 1. There exists an optimal solution (using the fewest number of gas stations)
whose first station is s.

1Based the recurrence, we can in fact compute Fn in O(log n) time using matrix multiplication.

1

Proof. (By cut-and-paste argument.) Consider an optimal solution OPT = (s1, s2, . . . , sk),
with stations ordered from left to right. If s1 = s, then the lemma is correct. Otherwise,
we replace s1 by s, and remove redundant gas stations (if any). It is easy to see that s1

must be on the left of s, since if not, the distance of s1 and SF is more than n km. Thus,
after the replacement, we obtain another solution that can allow us to travel from SF to
Seattle. The new solution uses at most the same number of gas stations as OPT , which
must be optimal. Thus, the proof completes.

Let OPT be an optimal solution that contains s. Suppose OPT has k gas stations.

Lemma 2. By removing s from OPT , the remaining k − 1 gas stations must form an
optimal solution to travel from s to Seattle, starting with a full-tank at s.

Proof. (By contradiction.) Let OPT ′ be an optimal solution to travel from s to Seattle.
Suppose on the contrary that the lemma is incorrect. Then, OPT ′ must use fewer than
k − 1 gas stations, since OPT − {s} is a feasible solution to travel from s to Seattle.
Consequently, OPT ′∪{s} has at most k−1 gas stations, which implies a solution to travel
from SF to Seattle with fewer gas stations than OPT , leading to a contradiction.

The previous lemmas suggest the following algorithm to find the optimal set of gas stations:

1. Choose s1 = rightmost gas station from SF within first n km ;
2. k = 1 ;
3. while (distance(sk, Seattle) > n) {
4. Choose sk+1 = rightmost gas station from sk within first n km ;
5. k = k + 1 ;
6. }

4. We give two different potential functions Φ that can show the desired amortized bounds.

Solution 1: For each node u in the heap, Φ(u) = size of the subtree rooted at u. Then,
for a heap H, Φ(H) =

∑
u∈H Φ(u) = sum of potentials of all the nodes. It is easy to check

that at any time, Φ(H) ≥ 0.

When Insert is performed, at most log n nodes will increase each of their potential by
1, so that the potential of H will be increased by at most log n. Since the actual cost of
insertion is also log n, the amortized cost of Insert is O(log n).

When Extract-Min is performed, each ancestor of the last node of the heap will decrease
their potential by 1, which is the same as the actual cost of Extract-Min. Thus, its
amortized cost is O(1).

Solution 2: For each node u in the heap, Φ(u) = node-depth of u. Then, for a heap H,
Φ(H) =

∑
u∈H Φ(u) = sum of potentials of all the nodes. It is easy to check that at any

time, Φ(H) ≥ 0.

When Insert is performed, a new node is created with node-depth at most log n. Con-
sequently, the potential of H will be increased by at most log n. Since the actual cost of
insertion is also log n, the amortized cost of Insert is O(log n).

When Extract-Min is performed, the last node of the heap is removed. This causes a drop
in the potential by its node-depth, which is the same as the actual cost of Extract-Min.
Thus, the amortized cost of Extract-Min is O(1).

2

5. Let b be the binary representation of the number of elements before an insertion, and let
r be the number of consecutive 1’s at the rightmost of b. Here, r ranges from 0 to blog nc.
After an insertion, the binary representation is changed such that the (r + 1)th rightmost
bit changes from 0 to 1, while the last r bits all become 0.

Consequently, we need update the set of sorted arrays. One way to do so is to merge
the r arrays corresponding to the r 1’s, and merge them together with the newly inserted
element. We can do so by merging the newly inserted element with the 1-element array,
forming a 2-element array; then, merge this with the original 2-element array to form a
4-element array; and so on. This process can be done in O(2r) time.

When m insertions (with m ≤ n) are performed, the number of times that a binary
representation has exactly r rightmost consecutive 1’s is O(m/2r). Thus, the total time
for m insertions is at most:

blog nc∑
r=0

O(m/2r)×O(2r) = O(m log n).

Thus, the amortized cost of insertion is O(log n).

6. (a) Suppose on the contrary that there exist distinct (x, x + k) and (y, y + k) which are
both losing. WLOG, let y > x. Now, by removing y − x coins from both piles in
(y, y + k), we obtain a losing combination (x, x + k). Thus, contradiction occurs.

(b) Suppose on the contrary that there exist distinct (x, r) and (x, r′) which are both
losing. WLOG, let r′ > r. Now, by removing r′ − r coins from the second pile in
(x, r′), we obtain a losing combination (x, r). Thus, contradiction occurs.

(c) We shall prove the statement “Lk is a losing combination” by induction.

Base case: Since L0 is losing, the statement is correct for k = 0.

Inductive case: Suppose the statement is true for k = 0, 1, . . . , t−1. Then, consider
Lt = (v, v + t). We shall prove Lt is losing by showing each move of Lt leads to a
winning combination. There are three cases for a move:

i. Take from 1st pile:
We obtain a combination (v′, v + t) with v′ < v. By the choice of v, v′ appears in
Lk for some k ≤ t− 1. This implies there is a losing combination (v′, x) or (x, v′)
with |x− v′| at most t− 1. By part (b), we see that (v′, v + t) cannot be losing.

ii. Take from both piles:
We obtain a combination (v′, v′ + t) with v′ < v. Similarly, by part (b), we see
that (v′, v′ + t) cannot be losing.

iii. Taking from 2nd pile:
If taking at least t coins, we get a combination (v, v′) with v′ < v. By our choice
of v, there is some losing combination (v′, x) or (x, v′) with x < v. Then, by part
(b), we see that (v, v′) cannot be losing.
If taking less than t coins, we get a combination (v, v + t′) with t′ < t. By our
choice of v, there is some losing combination (v′, v′ + t′) with v′ < v. Then, by
part (a), we see that (v, v + t′) cannot be losing.

In conclusion, every move of (v, v + t) leads to a winning combination. Thus, Lt must
be losing, and this completes the proof of the inductive case.

(d) The v-value of Lk is strictly increasing. Thus, the v-value of Lx, vx, is at least x. This
implies that L0, L1, . . . , Lx must contain all values at most vx, and thus containing x.

3

(e) The most time-consuming step is to find the smallest unseen number. We can make
this efficient by using an auxiliary array A to record whether a number is seen or
not. At any time, we maintain a pointer P pointing at the smallest unseen number,
so that each time v can be found in O(1) time. Once Lk is computed, we update
A accordingly, and move the pointer P rightwards, one entry after another, until it
locates the next unseen number.

Since x ≤ n, it is easy to check that A is updated at most O(n) times, and the pointer
P is moved at most O(n) times. The total time spent is O(n).

(f) We compute L0, L1, . . . , Lx in O(n) time and find the losing combination that contains
x. If that combination is (x, y) or (y, x), we conclude immediately that (x, y) is losing.
Otherwise, by part (b), we can also conclude immediately that (x, y) is winning.

4

