
CS4311 Design and Analysis of Algorithms

Homework 2 (Suggested Solution)

1. (a) Ans. Let ` be the length of the input, and m = b`/3c. The correctness can be shown
by induction on m.

(Base Case:) When m = 0, ` is either 0, 1, or 2. It is obvious that the algorithm is
correct in all cases.

(Inductive Case:) Suppose that the algorithm is correct for all ` such that m =
0, 1, 2, . . . , k−1. In other words, the algorithm is correct for all ` = 0, 1, 2, . . . , 3k−1.

When m = k, ` is either 3k, 3k + 1, or 3k + 2. In all cases, the minimum ` % 3
numbers will be placed correctly before the three recursive calls. It remains to show
that after the three recursive calls, the remaining 3k numbers will be sorted correctly.

First, the induction hypothesis guarantees that each of the three recursive calls will
perform correctly (because each is called with length less that 3k). Thus, after the
first recursive call, the largest m numbers cannot be in the leftmost m entries, so
that the largest m numbers must then be within the rightmost 2m entries. This
implies that after the second recursive call, the m largest numbers must be placed in
the rightmost m entries and sorted. Finally, the third recursive call guarantees the
remaining 2m smaller numbers are sorted. So, the algorithm performs correctly.

(b) Ans. T (n) = 3 T (2n/3) + O(n)

(c) Ans. By Master Theorem,

T (n) = Θ(nlog1.5 3) ≈ Θ(n2.7095) = ω(n2).

Thus, in terms of the asymptotic running time, JohnSort is worse than both insertion
sort and merge sort.

2. Ans.

� � �

� � �

� � �

� � �

� 	 �


 � 	

� � �

 � �

� � �

� � �

� � 	

� � �

� � �

� 	 �

� 	 �

� 	 �

� 	 �

� � �

� � �

� � �

� � �

� � �

� � 	


 � 	

 � �

� � �

� � �

� � �

� � �

� 	 �

� 	 �

� 	 �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� 	 


� 	 


� 	 �

 	 �

� � �

� 	 


� 	 �

� 	 �

� 	 


� � �

� 	 �

� � �

 	 �

� 	 �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� 	 


� 	 


� 	 �

1



3. Ans. Let x and y be two integers, and let `x and `y denote the lengths of the strings
representing x and y, respectively. A key observation is that: if the length `x is shorter
than the length `y, then the corresponding integer x must be smaller than the corresponding
integer y.

This observation gives us a way to sort our input numbers, using the “bucketing by length”
scheme, as follows:

(Step 1:) Create n buckets, where Bucket i is used for holding integers whose length is
exactly i.

(Step 2:) Distribute the k input integers to the corresponding bucket.

(Step 3:) Sort each bucket separately using Radix Sort.

(Step 4:) Collect the sorted list of integers in each bucket, from Bucket 1, Bucket 2, ...,
up to Bucket n.

The correctness of the above algorithm follows from the key observation and from the
correctness of Radix Sort. For the running time, it takes O(n + k) time to create the
buckets and distribute the numbers into the correct bucket (Steps 1 and 2). After that,
the time spent in Radix Sort (Step 3) is proportional to the total number of digits in the k
numbers, so the time is O(n). Finally, the collection phase in Step 4 takes O(n + k) time.
Since k is smaller than n, the total running time is O(n).

4. (a) Ans. There are many possible answers. Some examples are shown below:

2 3 4 ∞
5 8 12 ∞
9 14 ∞ ∞
16 ∞ ∞ ∞

2 3 4 5
8 9 12 14
16 ∞ ∞ ∞
∞ ∞ ∞ ∞

2 5 8 ∞
3 12 ∞ ∞
4 14 ∞ ∞
9 16 ∞ ∞

(b) Ans. The Young tableau property guarantees that Y [i, j] ≤ Y [x, y] if x ≥ i and
y ≥ j. It is because:

Y [i, j] ≤ Y [i + 1, j] ≤ · · · ≤ Y [x, j], and

Y [x, j] ≤ Y [x, j + 1] ≤ · · · ≤ Y [x, y].

This implies that any entry Y [x, y] must be at least Y [1, 1]. So, if Y [1, 1] = ∞, the
table cannot contain a finite value, and must therefore be empty. Similarly, any entry
Y [x, y] must be at most Y [m,n]. So, if Y [m,n] < ∞, the table cannot contain ∞ and
must therefore be full.

(c) Ans. To perform Extract-Min, we first replace the entry Y [1, 1] by ∞. This step
guarantees that the table will be storing exactly the same set of values as the desired
table. Next, we will restore the ordering of the entries so that each row and each
column become sorted.

The restoration step is very similar to the Extract-Min in a heap. We say an entry e
satisfy the “sorted-property” if its right adjacent entry and its bottom adjacent entry
both have values greater than the value of e. We claim that after each swap, at most
one entry may violate the “sorted-ordering” property.

Then, after each swap, while there is a violating entry x, we will compare the values
in the adjacent entries to the right and to the bottom (if exist) of x. Let y be the

2



entry whose value is smaller. We then swap the value of y with the value of x. After
the swapping, y becomes the single entry which may violate the “sorted-ordering”
property.

Suppose that our claim is true. Then, there can be at most m + n − 1 swaps in the
restoration step, because each swap must move the violating entry one step right or
one step bottom. Once no entry violate the “sorted-ordering” property, each row and
each column in the tableau must be sorted. Thus, if our claim is true, the time for
Extract-Min in the tableau is O(m + n).

It remains to prove the claim. To show that, we shall use induction to show that after
each swap, the following two statements are simultaneously correct:

(i) At most one entry may violate the “sorted-ordering” property;

(ii) if x is the violating entry, let t, `, r, b denote the adjacent entries (if exist) to
the top, left, right, and bottom of x. Then, both the values of t and ` are greater
than both the values of r and b.

(Base Case:) It is easy to check that after the first swap, both statements are true.

(Inductive Case:) Suppose the two statements are true after the kth swap. During
the (k + 1)th swap, x either swaps with r or b, whichever contains the smaller value.
Let us call the swapped entry y. After this swapping, the value in x will satisfy the
“sorted-ordering” property because it now contains the smaller of the original r or b.
Also, u and ` satisfy the “sorted-ordering” property because of induction hypothesis
that x now contains a value larger than both u and `. All remaining entries (except y)
must follow the “sorted-ordering” property because values in their right and bottom
neighbors are not changed. Thus, y becomes the only entry which may violate the
“sorted-ordering” property, and both entries to the top and left of y have values
smaller than both entries to the right and bottom of y, due to induction hypothesis
that the original y satisfy the “sorted-ordering” property after the kth swap.

(d) Ans. We start with an empty tableau. Then, we use n2 Insert to insert the input
numbers into the tableau. After that, we call Extract-Min n2 times to obtain the
sorted sequence of the input numbers. Since each Insert or Extract-Min take O(n)
time, the total time is O(n3).

5. Ans. Given a m × n Young tableau, for any number K, we define the boundary of K in
the ith row, denoted Bound i(K), the the position of the rightmost entry whose value is at
most K. Then, to check if K exists in the tableau, it is sufficient to check for each row i,
whether the values of the Bound i(K)th entry is K.

A key observation is that: for any row, Bound i(K) ≥ Bound i+1(K). In other words, the
boundaries of K is monotonically shifting towards the left side if we proceed from the top
row to the bottom row. This observation immediately gives us an efficiently way to find all
the boundaries of K: Start scanning the first row, from rightmost entry towards left, and
find Bound1(K). Then, iteratively, once Bound i(K) is obtained, we scan the (i+1)th row
from the Bound i(K)th entry towards left, and find Bound i+1(K). Using this procedure,
all the boundaries of K are found in O(m+n) time (because by considering the first move
in each row as a ‘vertical’ move, we have made a total of n left moves, and a total of m
vertical moves). Once the boundaries are obtained, we can decide if K is in the tableau in
O(m) time.

In conclusion, the total time taken is O(m + n).

3


