
Design and Analysis
of Algorithms

Assignment 2 Solution

Question 1

(a) Show by induction:
Let l= the length of array, m= l-3
Show that an array of length l is sorted after

running our algorithm
For m=1:

l = 1, the element is sorted
l = 2, after swapping, this part is sorted
l = 3, this is similar to an insertion sort on array

length of 3 (why?)

Question 1

Assume m=n ,this algorithm is correct
For m=n+1:
m%3= 1, we will put the smallest element

on the first place and …
m%3= 2, just the same as m%3=1
m%3= 0, this is a little complicated…

We have 3 routines sorting 2/3 total
elements, by assumption, these routines
correctly sort these elements.

largersmaller

largest

Question 1

(b)
T(n) = 3T(2n/3) + O(n)

(c)
Master Theorem can easily give a
tight bound

Question 2

An ordinary RadixSort can handle this.

Question 3

1 2 3 4 5 n

532

71

8
“Bucketing by Length”:

Put each item in the bucket
that represents its length

1 2 3 4 5 n

532

256

094

049

Use RadixSort to sort
each bucket

Bucket 3 stores all
length-3 items

1 2 3 4 5 n

Take out items one by one
from 1st bucket,2nd bucket,…

8

2

Question 3

Why is this algorithm correct?
How to analyze the time complexity?

Question 4

(a) Easy , free points

(b) By the characteristic of Young Tableau,
if Y[1,1] is infinity then no other elements
can be greater than it, so …

Question 4

(c) Use a Heap-like method, maximum #
of swapping steps = m+n-1

To show correctness, use induction to
show that, after each swap:
(I) at most one entry may violate Young

Tableau property
(II) If an entry X violates the property, the

entries above or left of X have values
smaller than the entries down or right of X

Question 4

(d)
First insert each unsorted elements into the

tableau - O(n2(n+n)) = O(n3)
Then use Extract-Min n2 times

- O(n2(n+n)) = O(n3)
Total : - O(n3)+ O(n3) = O(n3)

Question 5 (Bonus)

Let Boundi(K) = position of the boundary
on ith row which pivots K

1311109
12986
8753
6421 Bound1(5)=3

Question 5

Observe that for any K,
Boundi(K) ≧ Boundi+1(K) (Why?)

1311109

12986

8753

6421

Question 5

Then we search for the element just
before the boundary

1311109

12986

8753

6421

Question 5

How about its complexity?
Suppose there’re n rows, m columns
Finding Bound1(K) –O(n)
Search for Boundi(K) from tail –O(n+m)
Find K –O(m)
Total : O(n) + O(n) + O(m) = O(n+m)

