Fall, 2025 Week 8 2025,09,20

2025.09.20		
組別: 簽名:		
[group 1]		
1. Qustion:		
(Floating Point Representations)		
In the IEEE 754 single-precision floating-point format, what is the largest possible unbiased exponent value that can be represented by a normalized number? (Exclude the all-ones exponent reserved for ∞ and NaN).		
Ans:		

[group 2]

2. Question:

Suppose that A = 0xB and B = 0x7. Show the step-by-step result of multiplying A and B, using Booth's algorithm. Assume A and B are 4-bit two's complement integers, stored in hexadecimal format. When is it not ideal to implement Booth's algorithm?

[group 5]

3. Question:

State T/F and explain briefly.

- a. On MIPS, Lo holds quotient, Hi holds remainder.
- b. ${\tt div}$ automatically raises and handles divide-by-zero in hardware.
- c. Divide HW V2 uses shift-left remainder (not shift-right divisor).
- d. In signed division, the remainder follows the dividend's sign.
- e. Integer multiply and divide **share** the same ALU/shift hardware (direction and add/sub differ).

[group 7]

	\sim	
/1	11	maction:
4.	ν,	uestion:

Ans:

[group 8]

5. Question:

True or False?

- (A) Floating point representation consist of only three part: sign, exponent and fraction.
- (B) Use 2's complement on exponent representation.
- (C) IEEE 754 preserve encodings for "Infinity", "NaN". However, it fails to represent "denormalized numbers".
- (D) The precision of floating-point is relative precision depending on the exponent part of floating-point

[group 9]

6. Question:

Why is the exponent in floating-point representation not represented using two 's complement, but instead represented using biased notation?

Ans:

[group 6]

7. Question:

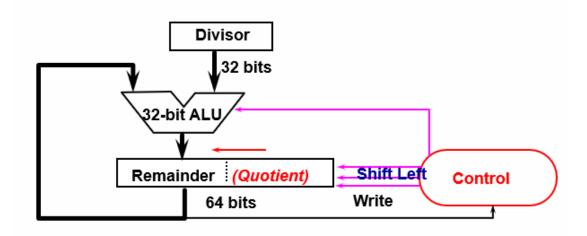
True or False:

- a. when we use mult \$11, \$12, we will push most significant 32 bits to lo and least significant 32 bits to hi.
- b. In biased 15, 10110 represents 7.
- c. Hi and Lo registers are used in both multiplication and division, and Hi would store the quotient in division.
- d. Exponents with all 1's are reserved for $\pm \infty$ and NaN.
- e. When performing signed division, it can first be treated as unsigned (positive) division.

[group 10]

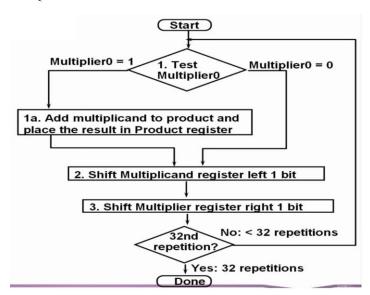
8. Question:

why the syntax [mult] only use two registers as operands? Please describe the difference between [mult] with [mul].


Ans. Since mult may have an result of 64-bits which need 2 special reg (hi lo) to store. However, mul directly store the least significant 32-bits in the destination register.

Ans:

[group 12]


9. Question:

Given the divisor below (unsigned), we perform 0111/0011. Please write down the value in the remainder for every step.

[group 3]

10. Question:

Using the flowchart above, we are implementing the multiplication 1100×0101 .

Assume that after one ALU operation (step 1a) is completed, the content of the Multiplier register is 0001. What is the content of the Product register at this moment?

[group 14]

11. Question:

Write down the IEEE 754 representation (in hex format) for the value "-13.125 $_{10}$ "