
Computer Architecture

Fall, 2025

Week 4

2025.09.22

組別：＿＿＿＿＿ 簽名：＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿

[group 1]

1. True or False: Addressing for 32-bit addresses

a. MIPS branch instructions (beq, bne) can encode a full 32-bit target address directly

within the instruction, since the immediate field is sign-extended to 32 bits.

b. The 16-bit immediate in a branch instruction is interpreted in bytes, so the branch

offset range is limited to ±32 KB in the address space.

c. MIPS jump (j, jal) instructions achieve 32-bit target addresses by concatenating the 26-

bit target field with the upper 4 bits of the current PC and appending two zero bits,

forming a word-aligned address.

d. The reason MIPS uses PC-relative addressing for branches and pseudodirect

addressing for jumps, rather than storing full 32-bit addresses, is that the 32-bit fixed

instruction format cannot accommodate both the opcode and an entire 32-bit address at

once..

Ans:

a. False. MIPS branch instructions do not directly encode full 32-bit addresses; they

instead rely on PC-relative addressing with a 16-bit signed offset. This offset is sign-

extended, but its purpose is to specify a relative distance from PC+4, not to encode an

absolute address.

b. False. Branch offset is given in words, not bytes. This means the 16-bit immediate is

shifted left by two bits, yielding a range of ±2^15 words, or ±2^17 bytes (about ±128

KB), which is significantly larger than ±32 KB.

c. True. The pseudodirect jump mechanism in MIPS combines the 26-bit target from the

instruction with the high 4 bits of the PC and appends two zeros.

d. True. With only 32 bits available per instruction, it is impossible to hold both a 6-bit

opcode and a full 32-bit address field.

[group 4]

2. Question:

Why are there beq and bne instructions for == and !=, but no blt (<) or bge (>=) instructions?

Ans:

hardware for blt (<) and bge (>=) are slower (more complex) than beq (==) and bne (!=),

beq and bne are the common case. And it’s a good design compromise.

[group 5]

3. Question:

In ARM, the top 4 bits of each instruction specify a condition code. What is the benefit of

this feature?

Ans:

 Conditional execution allows short conditional statements to be executed without using

branch instructions. (This reduces pipeline flushes and branch misprediction penalties,

improving performance.)

[group 3]

4. Question:

sum:

 addi $sp, $sp, -8

 sw $ra, 4($sp)

 sw $a0, 0($sp)

 add $v0, $a0, $a1 # v0 = a0 + a1

 lw $a0, 0($sp)

 lw $ra, 4($sp)

 addi $sp, $sp, 8

 jr $ra

If the function is called as sum(7, 5), what is the return value stored in $v0?

Why does the function begin with the instruction addi $sp, $sp, -8?

Ans:

$v0 = 12

To allocate 8 bytes of stack space for saving $ra and $a0, preventing their values from being

overwritten during the function call.

[group 7]

5. Question:

Assume a beq $s1, $s2, Exit instruction is at memory address 80012, and the Exit label is at

address 80024. Calculate the immediate value for the beq instruction's 16-bit address field.

Ans:

To find the immediate value, we use the PC-relative address formula:

Target Address = (PC + 4) + (immediate × 4)

Plugging in the given values:

80024 = (80012 + 4) + (immediate × 4)

80024 - 80016 = immediate × 4

8 = immediate × 4

Therefore, the immediate value is 2.

[group 8]

6. Question:

What is the difference between a leaf procedure and a non-leaf procedure in MIPS, and how

does the use of the stack differ between them

Ans:

- Leaf procedure:

● A procedure that does not call another procedure.

● Only needs to save its own local variables (e.g., $s0) and temporaries if

required.

Example: leaf_example saves $s0 on the stack, performs calculations, restores $s0,

and returns with jr $ra.

- Non-leaf procedure:

● A procedure that calls another procedure (e.g., recursive functions).

● Must save not only local variables but also the return address ($ra) and any

arguments or temporaries that are still needed after the call.

Example: fact (factorial) saves $ra and $a0 on the stack before making a recursive call,

restores them afterward, and then multiplies the result.

[group 9]

7. Question:

We use J-format instruction to implement jump addressing. However, the op code occupies

6 bits, so there are only 26 bits for the target address. How can we specify a 32-bit memory

address with only 26 bits? Please explain.

Ans:

First, the last two bits are always 00 because each word has 4 bytes. After that, the

remaining 4 bits (highest order) are taken from the 4 highest order bits of the program

counter, then we have 4 + 26 + 2 = 32 bits to specify an address.

However, we should avoid placing a program across an address boundary of 256MB, since

the memory is divided into 24 = 16 sections and we can only access to one of them

simultaneously.

[group 11]

8. Question:

Caller is in charge of placing parameters in registers, transferring control to procedure.

Does it acquire storage for procedure? Why or why not.

Ans:

No. Caller doesn’t acquire the storage for the procedure. Callee does.

[group 12]

9. What are the five addressing modes of MIPS?

Ans:

1.Immediate Addressing Mode

2.Register Addressing Mode

3.Base or Displacement Addressing Mode

4.PC-relative Addressing Mode

5.Pseudodirect Addressing Mode

[group 13]

10. Question:

Turn this C code into MIPS instruction (Assume the input n is n >= 0)

int pow2(int n){

if (n < 1) return 1;

else return 2 * pow2(n-1);

}

Ans:

Pow2:

 addi $sp $sp -8

 sw $ra 4($sp)

 sw $a0 0($sp)

 slti $t0 $a0 1

 beq $t0 $zero L1

 addi $v0 $a0 1

 addi $sp $sp 8

 jr $ra

L1:

 addi $a0 $a0 -1

 jal pow2

 lw $a0 0($sp)

 lw $ra 4($sp)

 addi $t0 $t0 2

 addi $sp $sp 8

 mul $v0 $t0 $v0

 jr $ra

[group 14]

11. Question:

Let the value of the program counter be 0xCF01FC00. What is the target address of the

instruction, j 0x20.

Ans:

0xC0000080

