
1/4

Computer Architecture
 Fall, 2025

Week 2
2025.09.08

組別： 簽名：

[group13]
1. Two processors P1 and P2 implement the same ISA and run at the same clock rate. Instructions are

divided into four classes (I, J, K, L). Their CPIs are as follows:
l P1: I = 1, J = 3, K = 3, L = 5
l P2: I = 2, J = 2, K = 2, L = 2

A certain program’s instruction mix is:
l 5% I, 25% J, 40% K, 10% L.

Which processor delivers better performance?

Ans:
Since both processors have the same clock rate, we only need to compare their average CPI.
Average CPI of P1:
CPI=1×0.25+3×0.25+3×0.40+5×0.10=0.25+0.75+1.2+0.5=2.7
Average CPI of P2:
CPI=2×(0.25+0.25+0.40+0.10)=2×1.0=2.0
Conclusion: P2 has better performance (lower CPI = 2.0 vs. 2.7).

[group13]
2. Why does MIPS need to include immediate instructions?

Ans:
The design of immediate instructions in MIPS is motivated by the fact that small constants appear very
frequently in programs (about 50% of the operands). If these constants were always loaded from memory,
performance would suffer. By embedding constants directly in the instruction, operations can be executed
faster, which follows the design principle of “Make the common case fast.”

[group3]

3. 用 MIPS(millions of instructions per second)來判斷處理器的 performance 不一定是個準確的方

式，請判斷以下兩個處理器，誰有較大的 MIPS？誰有較好的 performance？

2/4

l P1: clock rate: 4 GHz, average CPI: 0.9, requires 5 ∗ 10! instructions
l P2: clock rate: 3 GHz, average CPI: 0.75, requires 1 ∗ 10! instructions

Ans:

MIPS =
!"#!$	&'()
*+,	∗	./!

P1:
!	∗$%!

%.'	∗	$%"
= 4444.4	𝑀𝐼𝑃𝑆

P2:
(∗$%!

%.)*	∗	$%"
= 4000	𝑀𝐼𝑃𝑆

Perforamance (Execution Time)

,01(&2!(3#01∗*+,

!"#!$	&'()

P1:
*	∗$%!∗%.'
!	∗	$%!

= 1.125𝑠

P2:
$	∗$%!∗%.)*
(∗	$%!

= 0.25𝑠

MIPS: P1 > P2
Performance P2 better than P1

[group 4]
4. Assume the base address of integer array A is stored in register $s0 and integer variables b, c are

assigned to register $s1, $s2. Translate the following C code into MIPS:
b = 3;
A[--b] = c++;

Ans:
addi $s1, $zero, 3 # b = 3
addi $s1, $s1, -1 # --b
add $t0, $s1, $s1 # t0 = b*2
add $t0, $t0, $t0 # t0 = b*4
add $t0, $t0, $s0 # t0 = &A[b]
sw $s2, 0($t0) # A[b] = c
addi $s2, $s2, 1 # c++

3/4

[group 4]
5. Assume that variables f, g, and h are assigned to registers $s0, $s1, and $s2, respectively. The base

addresses of arrays A and B are stored in $s3 and $s4, respectively. Translate the following MIPS
code into C:
add $t0, $s2, $s2
add $t0, $t0, $t0
add $t0, $s3, $t0
lw $t1, 0($t0)
add $t1, $t1, $s1
add $t2, $t1, $t1
add $t2, $t2, $t2
add $t1, $s4, $t2
sw $s0, 4($t1)

Ans:
B [A[h] + g + 1] = f;

[group 5]
6. Why are there 32 registers in MIPS architecture instead of more?

Ans:
Because of design principle 2: “Smaller is faster.

[group 11]
7. What are three fundamental design principles of instruction set architecture (ISA)? Additionally, which

principle explains why MIPS uses only 32 registers?

Ans:
l simplicity favors regularity
l smaller is faster
l make the common case fast

[group 11]
8. According to Amdahl’s Law, suppose there is a model where 75% of the execution time can be

optimized. By how much must we speed up the optimizable portion in order to double the overall
system performance?

Ans: 3

4/4

[group 10]
9. Transfer the following C code to MIPs Code:

a = (b - c) + (d - e)

Ans:
Sub t0, b, c
Sub t1, d, e
Add a, t0, t1
[group 10]
10. What is Instruction Set Architecture (ISA)? What is its value?

Ans:
ISA is the interface between the processor and software, defining the instruction set and execution rules.
In the early days of computing, machines could only handle fixed tasks. ISA made computers more flexible
by translating computations into program instructions, similar to today's assembly language.

[group 7]
11. Explain Amdahl's Law and calculate the maximum speedup of a program that is 40% serial and 60%

parallelizable. Why does the speedup have a limit even with infinite processors?

Ans:

Amdahl’s Law: 𝑆(𝑁) = 	 "
("$%)'!"

 , note: 𝑁	𝑖𝑠	#	𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟, 𝑃 = 0.6, 𝑆(𝑁) = 𝑆𝑝𝑒𝑒𝑑𝑢𝑝	𝑓𝑜𝑟	𝑁 −

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

lim
(→*

𝑆(𝑁) =
1

(1 − 0.6) + 0.6𝑁
=

1
0.4 = 2.5

Max speedup for 40% serial and 60% parallel program is 2.5X.

