
ECE 595Z: Digital VLSI Design Automation, Spring 2012

Cycles in Combinational Circuits

• Digital circuits are called
combinational if they are
memory-less: they have
outputs that depend only on
the current values of the
inputs.

• Common misconception:
combinational circuits cannot
contain cycles

• There exists a class of
combinational circuits whose
minimum implementation
MUST necessarily be cyclic

1

W. H. Kautz, “The Necessity of Closed Circuit Loops in Minimal Combinational
Circuits," IEEE Transactions on Computers, Vol. C-19, pp. 162-166, 1970.

f1 =
x1’f3 + x2’x3’

f2 =
x1f1’ + x1’x2’x3’

f3 =
x3’f2’ + x2’x3

f1 = x1’x2’ + x1’x3’ + x2’x3’
f2 = x1x2 + x1x3 + x1’x2’x3’
f3 = x1x2’ + x2’x3 + x1’x2x3’

Minimum
implementation

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Cyclic Combinational Circuits

• Can they arise during synthesis?
• Recall Boolean optimization using DCs

– Cycles result when you allow variables in the transitive fanout of
a node to appear in it’s don’t cares (SDCs + ODCs) and use them
in optimizing the node

• Many design automation tools break when they see
combinational cycles

• Algorithms can be enhanced to work with cycles at the cost of
modest slowdown

2

S. Malik, “Analysis of Cyclic Combinational Circuits," IEEE Transactions on Computer-
Aided Design, Vol. 13, No. 7, pp. 950-956, 1994.

A. Raghunathan, P. Ashar and S. Malik, "Test generation for cyclic combinational circuits",
IEEE Transactions on Computer-Aided Design, November 1995.

(my Design Automation course project!)
M. D. Riedel and J. Bruck, “The Synthesis of Cyclic Combinational Circuits," Design
Automation Conference, pp. 163-168, 2003.

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Summary: Technology-independent
Multi-level Synthesis

• Boolean network model
• Algebraic transformations
• Boolean optimization using SDCs and

ODCs

3

© 2012 Anand Raghunathan ECE 595Z: Digital VLSI Design Automation, Spring 2012

ECE 595Z
Digital VLSI Design Automation

Module 5 (Lectures 14-20): Multi-level Synthesis

Lecture 19

Anand Raghunathan
MSEE 348

raghunathan@purdue.edu
4

© 2012 Anand Raghunathan ECE 595Z: Digital VLSI Design Automation, Spring 2012

Multi-level Minimization in Practice :
MIS / SIS

Putting it together …

5

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Multi-level Minimization in Practice :
MIS / SIS

• Implement a wide
range of useful
optimization steps,
exposed as
commands to user

• Scripts : User
specified “recipes” or
sequences of steps

sweep
eliminate -1
simplify -m nocomp
eliminate -1

sweep
eliminate 5
simplify -m nocomp
resub -a

fx
resub -a
sweep

eliminate -1
sweep
full_simplify -m nocomp

Example:

script.rugged

6

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Anatomy of a synthesis script

• Command : sweep
• Removes all nodes

with a constant (0 or
1) function and all
nodes with only 1
input

• Periodically “clean
up” such nodes
produced by other
operations

sweep
eliminate -1
simplify -m nocomp
eliminate -1

sweep
eliminate 5
simplify -m nocomp
resub -a

fx
resub -a
sweep

eliminate -1
sweep
full_simplify -m nocomp

script.rugged

7

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Anatomy of a synthesis script

• Example: sweep

8

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Anatomy of a synthesis script

• Command : eliminate
<threshold>

• Eliminates all nodes
whose “value” is ≤
threshold by collapsing
them into their fanouts

• Value represents the
number of literals saved
by keeping the node
– Approximated by number

of times a node output
appears in the factored
form of its fanouts

sweep
eliminate -1
simplify -m nocomp
eliminate -1

sweep
eliminate 5
simplify -m nocomp
resub -a

fx
resub -a
sweep

eliminate -1
sweep
full_simplify -m nocomp

script.rugged

9

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Anatomy of a synthesis script

• Example : eliminate

10

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Anatomy of a synthesis script
• Command : simplify
• Minimize SOP expression for

each node in the network using a
subset of the implicit don’t cares

• “-m nocomp” means use
ESPRESSO without computing
the full off set

• Multiple options for how to
compute don’t cares, default uses
a subset of transitive fanin of the
node

• full_simplify : similar, except
full-blown computation of don’t
cares

sweep
eliminate -1
simplify -m nocomp
eliminate -1

sweep
eliminate 5
simplify -m nocomp
resub -a

fx
resub -a
sweep

eliminate -1
sweep
full_simplify -m nocomp

script.rugged

11

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Anatomy of a synthesis script

• Example: simplify

12

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Anatomy of a synthesis script

• Command : resub
• Re-substitute each node

into every other node in
the network
– Explores using both the

node output and its
complement

• “-a” : use algebraic
division

• Keeps iterating until
network (literal count)
improves

sweep
eliminate -1
simplify -m nocomp
eliminate -1

sweep
eliminate 5
simplify -m nocomp
resub -a

fx
resub -a
sweep

eliminate -1
sweep
full_simplify -m nocomp

script.rugged

13

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Anatomy of a synthesis script

• Example: resub

14

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Anatomy of a synthesis script

• Command: fx
• Finds all single-cube and

double-cube divisors of nodes
in the network

• Greedily extracts the “best”
divisor as a node

• Usually followed by resub to
see if the extracted factors are
worth keeping

• Also see: commands gcx, gkx
– Use the techniques we spoke

about in class for kernels / co-
kernels

sweep
eliminate -1
simplify -m nocomp
eliminate -1

sweep
eliminate 5
simplify -m nocomp
resub -a

fx
resub -a
sweep

eliminate -1
sweep
full_simplify -m nocomp

script.rugged

15

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Anatomy of a synthesis script

• Example: fx

Note: fx creates new nodes by extracting common factors
 resub substitutes existing network nodes into each other

16

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Anatomy of a synthesis script
• Overview of strategy

used in script.rugged
• Four phases of

optimization
– Simpler to more

complex

• Uses algebraic
division for extracting
factors and
substitution

• Boolean optimization
for node simplification

sweep
eliminate -1
simplify -m nocomp
eliminate -1

sweep
eliminate 5
simplify -m nocomp
resub -a

fx
resub -a
sweep

eliminate -1
sweep
full_simplify -m nocomp

script.rugged

Simple
clean-
up

Round of
“easy”
factoring

Round of
aggressive
factoring

Optimize
each node

17

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Summary

• Multi-level synthesis
– Technology independent (completed)

• Boolean network model
• Operations: Extraction, Substitution,

Elimination, Decomposition, Simplification
• Algebraic model for factoring

– Kernels / co-kernels
– Algorithms using 0-1 matrices

• Boolean optimization using don’t cares
• Synthesis in MIS / SIS

– Technology mapping
• We will cover this next

18

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Further Reading

• “MIS: A Multiple-Level Logic Optimization System”, R. K. Brayton, R.
Rudell, A. Sangiovanni-Vincentelli, A. R. Wang, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol.
6, no. 6, Nov. 1987, pp. 1062 - 1081

• “Multilevel logic synthesis”, R. K. Brayton, G. D. Hachtel, and A.
Sangiovanni-Vincentelli, Proceedings of the IEEE, vol. 78, no. 2,
Feb. 1990.

• “Logic synthesis for VLSI design”, R. Rudell, Ph.D. thesis, U. C.
Berkeley, 1989.

• “A Method for Concurrent Decomposition and Factorization of
Boolean Expressions,” J. Vasudevamurthy, J. Rajski, IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Nov.
1990, pp. 510-513
– Shows that only double-cube divisors are sufficient to detect whether

common multi-cube divisors exist
– Excellent results: Synthesized circuits have similar quality to kernel-

based factoring, but 10X faster!

19

© 2012 Anand Raghunathan ECE 595Z: Digital VLSI Design Automation, Spring 2012

Technology Mapping : From Boolean

Networks to Gates

20

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Technology Mapping in the Logic
Synthesis Flow

• Technology
independent
optimization
produces a good
“rough” structure for
the network

• Technology mapping
realizes the network
using gates from a
cell library

21

Initial logic network

Technology
independent
optimization

Technology
mapping Cell library

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Technology Mapping
• Given

– A Boolean network (already optimized using technology
independent optimizations)

– A library that contains cells (gates) that can be used, with
models for area, delay, power

• Determine how to implement the given network
using gates from the library (optimally)

22

t1 = d + e

t2 = b + h
t3 =

a t2 + c

t4 =
t1 t3 + f g h

f = t4’

Library
Unmapped network

Area = …
Delay = …
Power = …

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Cell Library
• Contains variety of primitives (cells, or simple and

complex gates)
– Commercial libraries have dozens (or hundreds) of logic cells
– Each function in different “drive strengths”
– Richer cell libraries usually lead to better quality of results,

while increasing the complexity of technology mapping

23

OR2

AND2

NOR2

NAND2

INV

OR3

AND3

NOR3

NAND3

XOR2

XNOR2

OAI211

OAI21

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Approaches to Technology Mapping

• Rule-based (LSS, SOCRATES)
• Structural Pattern Matching (DAGON, MIS/SIS)

– Represent each node of the network as a set of base
functions (primitive gates):

• Must be complete
• Typically 2-input NAND and INVERTER
• Network becomes a subject graph

– Each gate of the library is likewise represented using the
base set. This results in pattern graphs.
• Represent each gate in all possible ways

– Cover the subject graph with pattern graphs

• Boolean matching
– Exploit Boolean relationships to find more / better

matches
– Use BDD representations

24

Our
focus

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Subject Graph

• Decompose each
node of the
Boolean network
into base
functions
– 2-input NAND

and INVERTER

• Subject graph is
a directed acyclic
graph (DAG)

• Not unique, any
decomposition is
OK

25

c
a

b

h

e

d

f

g

f

t1 = d + e

t2 = b + h
t3 =

a t2 + c

t4 =
t1 t3 + f g h

f = t4’

t1

t2

t3

t4

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Pattern Graph

• Each gate in the library is represented using the
same base functions
– Pattern Graphs
– Not unique

• Represent each gate in all possible ways

26

NAND4

Pattern Graphs for NAND4

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Pattern Graphs for a Simple Library

27

nand2(2)

inv(1)

nand3(3)

nand4(4)

aoi21(3)

aoi22(4)

and2(3)

xor(5)

nor2(2)

nor3(3)

nor4(4)

nand4(4)

nor4(4)

oai22(4)

or2(3)

xnor(5)

oai21(3)

Cost

ECE 595Z: Digital VLSI Design Automation, Spring 2012

c
a

b

h

e

d

f

g

f

Example:

Technology Mapping as a Graph Covering
Problem

• A cover is a collection of
pattern graph
instances such that
– Every node of the

subject graph is
contained in one or
more instances.

– Each input required by
a pattern graph
instance is a primary
input or the output of
some other pattern
graph instance

• Need to find the
minimum cost cover
– For now, we assume

that cost of the cover =
sum of the costs of
pattern graph
instances

28

Cost of the cover (8 nand2 + 7 inv) =

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Technology Mapping as a Graph Covering
Problem

• Multiple solutions exist!

29

c
a

b

h

e

d

f

g

f

Example

aoi22(4)
and2(3)

or2(3)

or2(3)

nand2(2)

nand2(2)
inv(1)

Cost of the cover (1 aoi22 + 2 or2 + 1 and2
 + 2 nand2 + 1 inv) =

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Technology Mapping as a Graph Covering
Problem

• Multiple solutions exist!

30

c
a

b

h

e

d

f

g

f

Example

Cost of the cover (2 oai21 + 1 and2 +
 1 nand3 + 1 nand2 + 1 inv) =

and2(3)

nand3(3)

oai21(3)

oai21(3)

nand2(2)
inv(1)

Need a
systematic
approach to
explore the

design
space

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Technology Mapping Using Graph
Covering

• General Approach
– Construct a subject DAG

(Directed Acyclic Graph) for
the Boolean network

– Represent each gate in the
target library by pattern DAGs

– Find an optimal-cost covering
of subject DAG using the
collection of pattern DAGs

• Challenge: Complexity of
DAG covering
– NP-hard
– Remains NP-hard even when

all nodes have in-degree ≤ 2

31

Two solution
approaches

Binate Row
Covering
Problem

Decompose
DAG into

trees

If subject graph and pattern
graph are trees (each vertex
has an out-degree of 1), then
an efficient algorithm exists!

	Cycles in Combinational Circuits
	Cyclic Combinational Circuits
	Summary: Technology-independent Multi-level Synthesis
	ECE 595Z�Digital VLSI Design Automation��Module 5 (Lectures 14-20): Multi-level Synthesis�Lecture 19
	Multi-level Minimization in Practice : MIS / SIS
	Multi-level Minimization in Practice : MIS / SIS
	Anatomy of a synthesis script
	Anatomy of a synthesis script
	Anatomy of a synthesis script
	Anatomy of a synthesis script
	Anatomy of a synthesis script
	Anatomy of a synthesis script
	Anatomy of a synthesis script
	Anatomy of a synthesis script
	Anatomy of a synthesis script
	Anatomy of a synthesis script
	Anatomy of a synthesis script
	Summary
	Further Reading
	�Technology Mapping : From Boolean Networks to Gates
	Technology Mapping in the Logic Synthesis Flow
	Technology Mapping
	Cell Library
	Approaches to Technology Mapping
	Subject Graph
	Pattern Graph
	Pattern Graphs for a Simple Library
	Technology Mapping as a Graph Covering Problem
	Technology Mapping as a Graph Covering Problem
	Technology Mapping as a Graph Covering Problem
	Technology Mapping Using Graph Covering

