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ABSTRACT

The dramatic growth of hardware attacks and the lack of security-
concern solutions in design tools lead to severe security problems
in modern IC designs. Although many existing countermeasures
provide decent protection against security issues, they still lack the
global design view with sufficient security consideration in design
time. This paper proposes a security-aware framework against Tro-
jan insertion, frontside probing, and fault injection attacks at the
design stage. The framework consists of two major techniques: (1)
a large-scale shielding method that effectively covers the exposed
areas of assets and (2) a cell-movement-based method to eliminate
the empty spaces vulnerable to Trojan insertion. Experimental re-
sults show that our framework effectively reduces the vulnerability
of these attacks and achieves the best overall score compared with
the top-3 teams in the 2022 ACM ISPD Security Closure of Physical
Layouts Contest.
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1 INTRODUCTION

The integrated circuit (IC) fabrication process has become more
and more complicated as technology advances. As a result, IC com-
panies started outsourcing the design and production of the chips
to lower manufacturing costs.

1.1 Background

As the semiconductor fabrication process requires many stages
from upstream to downstream, attackers could have plenty of op-
portunities to modify ICs maliciously [1]. Besides, ICs are applied to
many applications, such as mobile phones, communication, trans-
portation, and other critical domains. If the ICs are successfully
attacked, it could cost great losses to the semiconductor industry
and even jeopardize civilians’ lives. Consequently, these issues have
raised serious concerns about the authenticity of the fabrication
process and the trustworthiness of manufactured ICs. The demand
for hardware defense methods is getting more critical than before.

There are two straightforwardmethods tomaintain the reliability
of ICs. First, we could thoroughly inspect whether themanufactured
chips are damaged before selling them. Nevertheless, this method
is not effective enough since ICs are not repairable after fabrication.
Second, we could ensure that all the stages in the supply chain are
trustworthy. However, this solution is difficult and expensive since
the suppliers are all around the globe [2].

For the above reasons, secure-by-design has gradually drawn
attention. Secure-by-design is a paradigm indicating that confiden-
tiality, integrity, and availability must be considered throughout
the computer-aided design (CAD) flow, from the specification stage
to the fabrication and assembly stages [3]. The objective of secure-
by-design is to proactively protect the ICs and ensure the effects
of security methods implemented in the early design stages could
remain consistent in the following stages.

Trojan insertion, frontside probing, and fault injection attacks are
three common hardware attacks. Trojan insertion, also known as
hardware Trojan attacks, is a malicious modification or inclusion
made by suspicious third parties [1]. An IC attacked by Trojan in-
sertion might change its original behavior, leak private information,
or even the whole circuitry could be permanently damaged, thereby
losing its functionality. Besides, the types of hardware Trojans are of
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great variety, and they are becoming harder to be detected since the
attacking techniques have been advancing these years [1]. There-
fore, the threats brought by Trojan insertion are tremendous. As
shown in Figure 1, general layouts without implementing any de-
fense method would have numerous exploitable regions, which are
the continuous empty spaces vulnerable to insert Trojans. In pre-
vious research, Tehranipoor et al. [2] revealed the vulnerability of
ICs against malicious Trojan attacks. Given the reasons mentioned
above, it is extremely urgent to develop effective Trojan-resisting
countermeasures.

Figure 1. An advanced encryption standard (AES) layout without
implementing any defense method against Trojan insertion. The
red marks are the exploitable regions.

Probing attacks are invasive attacks meant to leak the private
information of the ICs. As shown in Figure 2, probing attacks would
bypass the security measures and expose the cells and nets contain-
ing sensitive information in the beginning. Afterward, attackers
would use hardware tools to physically attach to the cells and nets
exposed in the previous step and extract information from them
[4]. At the application level, probing attacks could be implemented
on security-critical IC devices, such as smart cards, smartphones,
financial systems, and even military systems [5], which also indi-
cates the significant risks to confidential information brought by
probing attacks.

Fault injection attacks (FIAs) have also drawn attention in the
last decade, and it has been proven to be highly effective in private
hardware information leaking [6]. An FIA aims to physically in-
terfere with an IC beyond its original functionality, and the errors
or side-effects induced could be used to crack cryptographic keys
and other secret data [7]. Using FIA and analyzing the abnormal
outputs of the ICs, called differential fault analysis (DFA), could
significantly reduce the number of experiments originally needed
for obtaining the secret keys [6]. Therefore, it is essential to create
secure methods against FIAs for information protection.

This work aims to create secure-by-design countermeasures to
cope with Trojan insertion, frontside probing, and fault injection
attacks.

Hole milled to expose 
target wire for probing

Covering wires

Depth of the hole

Target wire

Figure 2. Illustration of the frontside probing attacks with focused
ion beams (FIBs) [4].

1.2 Previous Work

1.2.1 Trojan Insertion Countermeasures. Wang et al. [8] presented
the complexity and strength of Trojans, revealing that it is chal-
lenging to detect them after they are inserted into the hardware.
Xiao et al. [1] proposed three classes of Trojan prevention methods,
including (1) logic obfuscation, (2) camouflaging, and (3) functional
filler cells. The concept of logic obfuscation is to hide the origi-
nal implementation or functions of a design by inserting built-in
locking mechanisms into it. The camouflaging technique aims at
confusing the attackers by adding fake contacts and connections
between nodes. Last, functional filler cells aim at filling unused
empty spaces with dummy modules so that there is no room for
Trojans [1].

Xiao et al. [9] present a novel technique called built-in self-
authentication (BISA). BISA eliminates empty spaces and replaces
themwith functional filler cells instead of nonfunctional ones. How-
ever, our work is not allowed to insert filler cells. Nabeel et al.
[10] proposed an active interposer that can integrate untrusted
chiplets securely at the system level. It is an active method that
monitors malicious behavior at runtime. Guo et al. [11] proposed a
new language-based framework called QIF-Verilog. The QIF-Verilog
framework presents a quantified information flow (QIF) model to
evaluate the trustworthiness of a hardware system at the regis-
ter transfer level (RTL). [10] and [11] focused more on detecting
hardware Trojans during runtime or at the RTL level, but our work
focused on making the physical layout more robust in the physical
design stage.

1.2.2 Probing Attack and Fault Injection Attack Countermeasures.
Cioranesco et al. [12] proposed an active shield method that detects
milling by creating wires carrying dynamic signals on the top metal
layer as a protective shield. Wang et al. [5] proposed a focused ion
beam (FIB)-aware anti-probing physical design flow to protect the
crucial wires by internal shield nets. The techniques aim at routing
the non-security-related nets above the target nets to create a shield.
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1.3 Motivation

Most hardware defense methods, especially Trojan insertion,
are detection-based [1]. However, hardening the layouts against
attacks at the design stage would be more secure. Current Trojan
insertion countermeasures focus on detecting Trojans, and these
detection methods could be vulnerable when the Trojan insertion
techniques advance. Besides, current frontside probing attack and
fault injection attack countermeasures cannot remove all the ex-
posed areas and fully protect the cell and net assets. Furthermore,
most previous works mainly focus on security and neglect the rise
in design costs brought by their countermeasures.

1.4 Contribution

This paper proposes a framework to proactively harden the lay-
out against Trojan insertion, frontside probing, and fault injection
attacks. Unlike previous countermeasures that attempted to iden-
tify and block hardware attacks, our flow focuses on building a
security-aware layout. The detailed contributions are summarized
below:

• We propose an effective defense framework against Trojan
insertion, frontside probing, and fault injection attacks. The
framework consists of our proposed pre-processing tech-
niques with two primary defense methods, (1) a large-scale
shielding method that could effectively remove the exposed
areas and (2) an effective cell movement algorithm to elimi-
nate the exploitable regions.
• We propose pre-processing techniques and integrate them
into the conventional physical design flow. As a result, we
can create a suitable placement and routing result for our
large-scale shielding method.
• We propose a large-scale shielding method that can effec-
tively protect all the cell and net assets from frontside prob-
ing attacks.
• We propose a cell movement algorithm at the post-route
stage, which could effectively eliminate exploitable regions
while restraining the power cost.
• Our proposed framework also considers comprehensive de-
sign costs, including power, timing, and area, which are not
often considered in previous defense methods.
• Experiment results show that our proposed framework can
significantly reduce exploitable regions and exposed areas.
Even more, we achieve the best scores among the participat-
ing teams at the 2022 ACM ISPD Security Closure of Physical
Layouts contest [13], which justifies the effectiveness of our
work.

The remainder of this paper is organized as follows. Section 2
introduces the addressed attack methods, describes the evaluation
models, and formulates the security-aware layout design problem.
Section 3 details our proposed algorithm flow and the techniques
used at each stage. Section 4 reports the experiment results, and
Section 5 concludes this paper.

2 PRELIMINARIES

In this section, we first introduce the Trojan insertion, frontside
probing, and fault injection attacks. Then, we give our problem

formulation of the security-aware design framework for Trojan
insertion, frontside probing, and fault injection attacks.

2.1 Trojan Insertion Attack

Trojan insertion attacks are a malicious hardware modification
of an electronic circuit, which leads to incorrect behavior during
operation [14]. The concept of Trojans is diverse, including those (1)
targeting at the system level, behavior level, gate level, or physical
level, (2) intending to leak sensitive information or destroy the
functionality of the circuit, and (3) crafted by additive, substitution,
or subtractive techniques [3]. In this paper, we focus on post-design
time gate-level addictive Trojan attacks.

Most Trojans comprise a trigger and a payload, as shown in
Figure 3. The trigger is an optional part that monitors the circuit
signals and activates the payload when an expected event occurs.
The payload performs the actual attack when receiving the signal
from the trigger. Otherwise, the payload remains inert, and the
circuit performs as a Trojan-free circuit [1].

Trippel et al. [15] mentioned that a successful Trojan attack
requires all three conditions: (1) Trojan placement, a spatial space
to place the additional Trojan components, (2) Trojan integration,
a connection between Trojan payload and security components,
and (3) Intra-Trojan routing, a connection among the trigger and
payload portions of Trojan. To complete a Trojan insertion attack,
the attackers need at least a spatial space and routing resources to
wire up the Trojan. Thus, the evaluation method in Section 2.3.1
will be based on this observation.

Trojan-free 
Circuit

Trojan-free 
Circuit

Trigger

Net
Payload

Figure 3. A Trojan consists of a trigger and a payload. To perform
a Trojan attack, intra-Trojan routing and Trojan integration are
required. That is, the trigger should be connected to the payload as
well as a Trojan-free target asset.

2.2 Frontside Probing and Fault Injection

Attacks

A probing attack is an invasive physical attack that enables the
probe to expose the cells or nets to extract sensitive information
through the frontside metal layers or the backside substrate [3].
The concept of probing attacks is diverse and covers those (1) us-
ing contact-based micro-probing, electromagnetic field probing,
or electro-optical device probing to achieve an attack [13] and (2)
aiming to obtain on-chip information, acquire device configuration,
or destroy system functionality [3].

This paper focuses on the frontside contact-based micro-probing
attack, which requires direct access to the target cells or wires and
is often achieved by using techniques like the focused ion beam
(FIB) [13]. First, an FIB mills a cavity with an ion beam to access
the targeted wires, as shown in Figure 4(a). Then, some metal gas
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atoms are injected and can be deposited in the cavity to build a
conducting path called an electrical probe contact, as shown in
Figure 4(b). Last, the attackers can extract the asset signal via the
electrical probe contact [5]. Note that all the steps above should
not damage the upper layer circuitry in order not to destroy the
functions of the ICs.

Fault injection attacks aim to deduce sensitive information by
directly or indirectly injecting faults during a cryptographic opera-
tion. Direct fault injection, for example, can be completed by using
laser light or electromagnetic waves. On the other hand, indirect
fault injection can be performed by repetitively writing to particu-
lar memory locations or by deliberately using dynamic voltage and
frequency scaling (DVFS) features [13].

This paper concentrates on frontside direct fault injection, like
laser fault injection. First, the laser light sneaking through the
metal stacks directs to the target assets. Due to the photoelectric
effect, electron-hole pairs are created and then induce the transient
current. Finally, this may affect the PN junction and the switching
of transistors of the related cells [13].

To sum up, the frontside probing and fault injection attacks
addressed in this paper share the same attack principle, aiming
to get down to the target assets via the metal stack. Thus, the
evaluation method in Section 2.3.2 will be based on this observation.

Figure 4. Illustrations of a focused ion beam (FIB). (a) An FIB mills a
cavity to reach the target wire. (b) The deposition of the metal gases
forms the conducting path, which serves as the electrical probe
contact [5].

2.3 Evaluation

The evaluation methods in this paper follow the 2022 ACM ISPD
Security Closure of Physical Layouts Contest [13]. This section in-
troduces the exploitable region for Trojan insertion and the exposed
area for frontside probing and fault injection attacks.

2.3.1 Exploitable Region for Trojan Insertion Attacks. An exploitable
region is a region that attackers can use to insert Trojans while meet-
ing the three requirements mentioned in Section 2.1. Specifically,
it can be an empty region that is big enough to accommodate the

Trojan components and have sufficient routing resources to route
the Trojan.

The paper defines exploitable regions as sets of spatially contin-
uous sites larger than the Trojan-placement threshold, which is the
minimal exploitable placement sites. Without loss of generality, we
set the threshold as 20 in this paper, which is the same as in the
ISPD contest. To estimate the severity of the threat, we compute
the maximum number, the average number, and the total number
of sites across all exploitable regions. The three values can help
evaluate the exploitable regions more comprehensively. The rout-
ing resource of the exploitable regions is defined by the number of
free tracks above the exploitable regions. To simplify the evaluation
process, we instead evaluate the number of all tracks above the
exploitable regions.

In addition, Trojans should be placed and routed at appropriate
positions to satisfy the design’s timing constraints. Thus, an ex-
ploitable region is only defined within the exploitable distance of
cell assets. The exploitable distance is the farthest distance among
all legal Trojan placement positions from the target assets. The
exploitable distance is computed as follows. First, we extract paths
related to the assets with positive timing slacks. Then, we virtually
insert an additional Trojan circuit. Without loss of generality, we
use NAND gates, the most simple form of Trojan, for evaluation.
With the lowest timing overhead among Trojans, NAND gates al-
low us to estimate exploitable distance conservatively. Next, we
estimate the delays resulting from the additional Trojan circuit.
For simplification, we do not perform actual routing. Instead, we
estimate the slacks with information from the library, like wiring
loads and capacitance loads. Finally, the exploitable distance is de-
termined as the maximal distance with at least one path of positive
slacks.

To sum up, we determine the exploitable regions as the ample
continuous spatial spaces within the exploitable distance and fur-
ther evaluate the Trojan insertion attack with the exploitable region
and the routing resources above the exploitable region.

2.3.2 Exposed Area for Frontside Probing and Fault Injection Attacks.
An exposed area is the region of the cell and net assets accessible
by the probes from the frontside via the metal layers. Same as the
ISPD contest, we assume that the probes are infinitely thin and
only consider the attack probing from the frontside at zero degrees
for simplification. That is, we do not consider the capabilities of
adversaries and compute all the regions accessible through a direct
line from the right top. This assumption is reasonable because
some fault injection techniques do not need a large exposed area
to induce fault injection. For example, laser fault injection requires
just a small transistor-sized exposed area to induce fault injection.
Meanwhile, the increasing exposed area provides an expanding
attack surface, so the attacker gains more chances to induce fault
injection on the target assets. Hence, we conclude that the exposed
area is positively related to the security threat of assets. Here we
define the exposed area as any region of the cell and net assets
visible from the frontside by a direct line through the metal stacks.

Figure 5 shows an example of the exposed area of the standard
cells in a layout. For evaluation, we further compute the maximum
percentage, average percentage, and total exposed area across all
assets to cover the different aspects of the threat from frontside
probing and fault injection attacks.
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Figure 5. An example of the exposed area of a cell. The exposed
area is marked in red.

2.4 Problem formulation

The problem formulated in this paper follows the 2022 ACM ISPD
Security Closure of Physical Layouts Contest [13]. The security-
aware layout design problem for Trojan insertion, frontside probing,
and fault injection attacks is formally defined as follows:

Problem 1 (The Security-aware Layout Design Prob-

lem for Trojan Insertion, Frontside Probing, and Fault

Injection Attacks). Given a cell assets list, a net assets list, and
a netlist of an original design, determine the desired position for each
cell and net subject to the following hard constraints so that the se-
curity threat posed by Trojan insertion, frontside probing, and fault
injection attacks can be minimized.

• Must maintain functional equivalence.
• Must maintain cell and net assets.
• Must maintain the ratio of area covered by power delivery
network(PDN) to die area relatively constant; variations of
+/- 10% in area coverage are permitted.
• Cannot add extra metal layers.
• Cannot add customized, specialized circuitry.
• Cannot relocate PDN to a different layer.
• Cannot create custom cells, meaning only cells defined in
the given LEF files can be used.
• Cannot insert filler cells, other non-functional cells, and
functional but unconnected cells.

3 PROPOSED ALGORITHM

This section provides an overview of our proposed framework,
outlining howwe tackle the security-aware physical layout problem.
Figure 6 illustrates our proposed security-aware design framework,
which contains five stages: (1) Floorplanning, (2) Probing-Aware
Pre-processing, (3) Placement and Routing, (4) Probing-Aware Post-
processing, and (5) Trojan-Insertion-Aware Post-Processing. In floor-
planning, we increase design utilization and maintain the overall
structure of the power delivery network. Then we construct the
placement regions and routing blockages in probing-aware pre-
processing, and then perform region-aware placement and regular
routing. In probing-aware post-processing, we create a large-scale
shielding net to cover the whole assets. Finally, in Trojan-Insertion-
Aware Post-Processing, we perform our greedy algorithm to elimi-
nate exploitable regions.

Asset Lists, Netlists, and Design Rules

Post-Route Result

Floorplanning

Placement and Routing

Probing-Aware Post-Processing

Probing-Aware Pre-Processing

Region Planning

Asset Grouping

Trojan-Insertion-Aware Post-Processing

Exploitable Region Elimination

Exploitable Region Identification

Final Refinement

Figure 6. Overview of our proposed framework.

(a) (b)

Figure 7. A comparison of layouts with different utilization rates.
(a) A layout with a 75% utilization rate. (b) A layout with a 94%
utilization rate. The red marks are the exploitable regions. A layout
with high utilization rate reduces exploitable regions significantly.

3.1 Floorplanning

The objective of Floorplanning is to determine the appropriate
core utilization rate and reconstruct the power delivery network
(PDN). First, we extract the PDN information from the original
netlist. Then apply a high core utilization rate to decrease ex-
ploitable regions preliminarily. Finally, we reconstruct the PDN
to meet the constraint mentioned in Section 2.4.

Exploitable regions are one of the primary criteria for a Trojan
insertion attack. A naive method to reduce exploitable regions is to
apply a high core utilization rate, as shown in Figure 7. Increasing
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the core utilization rate reduces exploitable regions and area costs
significantly. However, a high core utilization rate also leads to the
difficulty of timing closure. Based on the experiments, we set the
target core utilization rate to 90%–95% for each case to prevent
timing closure failures.

3.2 Probing-Aware Pre-Processing

Probing-Aware Pre-Processing is performed after Floorplanning.
This stage is to make the placer place the cell assets and cells
connected to net assets closer. The pre-processing procedure is
divided into two steps: (1) Asset Grouping and (2) Region Planning.

3.2.1 Asset Grouping. Most state-of-the-art placers use routability-
driven placement to address the congestion issue during placement.
Many previous works proposed various techniques to deal with
congestion problems, such as white spacing allocation [16], pin den-
sity control [17], and cell inflation [18]. These techniques increase
the separation between cells to preserve more routing resources.
However, protecting cell and net assets spread out all over the lay-
out is complicated and inefficient. Therefore, we group both cell
assets and cells connected to net assets and assign a higher weight
to net assets to make assets closer and shorter.

Algorithm 1 Region Planning
Input: an asset group 𝐺𝑎 , margin𝑚, 𝛼𝑥 , 𝛼𝑦
Output: an asset group region and a routing blockage region
1: 𝑎𝑠𝑠𝑒𝑡𝑠_𝑎𝑟𝑒𝑎 ← 0
2: for each cell 𝑐𝑖 in 𝐺𝑎 do

3: 𝑎𝑠𝑠𝑒𝑡𝑠_𝑎𝑟𝑒𝑎 += 𝑐𝑖 .𝑎𝑟𝑒𝑎

4: 𝑟𝑎𝑡𝑖𝑜 ← 𝑠𝑞𝑟𝑡 (𝑎𝑠𝑠𝑒𝑡𝑠_𝑎𝑟𝑒𝑎/𝑐𝑜𝑟𝑒.𝑎𝑟𝑒𝑎)
5: 𝑎𝑠𝑠𝑒𝑡𝑠_𝑟𝑒𝑔𝑖𝑜𝑛.𝑙𝑙 .𝑥 ← 𝑐𝑜𝑟𝑒.𝑙𝑙 .𝑥 +𝛼𝑥 ∗ (1−𝑟𝑎𝑡𝑖𝑜)/2∗𝑐𝑜𝑟𝑒.𝑤𝑖𝑑𝑡ℎ

6: 𝑎𝑠𝑠𝑒𝑡𝑠_𝑟𝑒𝑔𝑖𝑜𝑛.𝑢𝑟 .𝑥 ← 𝑐𝑜𝑟𝑒.𝑢𝑟 .𝑥−𝛼𝑥 ∗(1−𝑟𝑎𝑡𝑖𝑜)/2∗𝑐𝑜𝑟𝑒.𝑤𝑖𝑑𝑡ℎ

7: 𝑎𝑠𝑠𝑒𝑡𝑠_𝑟𝑒𝑔𝑖𝑜𝑛.𝑙𝑙 .𝑦 ← 𝑐𝑜𝑟𝑒.𝑙𝑙 .𝑦+𝛼𝑦 ∗ (1−𝑟𝑎𝑡𝑖𝑜)/2∗𝑐𝑜𝑟𝑒.ℎ𝑒𝑖𝑔ℎ𝑡

8: 𝑎𝑠𝑠𝑒𝑡𝑠_𝑟𝑒𝑔𝑖𝑜𝑛.𝑢𝑟 .𝑦 ← 𝑐𝑜𝑟𝑒.𝑢𝑟 .𝑦−𝛼𝑦∗(1−𝑟𝑎𝑡𝑖𝑜)/2∗𝑐𝑜𝑟𝑒.ℎ𝑒𝑖𝑔ℎ𝑡

9: 𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒_𝑟𝑒𝑔𝑖𝑜𝑛.𝑙𝑙 .𝑥 ← 𝑎𝑠𝑠𝑒𝑡𝑠_𝑟𝑒𝑔𝑖𝑜𝑛.𝑙𝑙 .𝑥 −𝑚
10: 𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒_𝑟𝑒𝑔𝑖𝑜𝑛.𝑢𝑟 .𝑥 ← 𝑎𝑠𝑠𝑒𝑡𝑠_𝑟𝑒𝑔𝑖𝑜𝑛.𝑢𝑟 .𝑥 +𝑚
11: 𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒_𝑟𝑒𝑔𝑖𝑜𝑛.𝑙𝑙 .𝑦 ← 𝑎𝑠𝑠𝑒𝑡𝑠_𝑟𝑒𝑔𝑖𝑜𝑛.𝑙𝑙 .𝑦 −𝑚
12: 𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒_𝑟𝑒𝑔𝑖𝑜𝑛.𝑢𝑟 .𝑦 ← 𝑎𝑠𝑠𝑒𝑡𝑠_𝑟𝑒𝑔𝑖𝑜𝑛.𝑢𝑟 .𝑦 +𝑚

3.2.2 Region Planning. Region Planning aims to construct a place-
ment region and routing blockage. Algorithm 1 summarizes our
planning algorithm, and the algorithm is detailed as follows. First,
for each cell in the asset group, we calculate the summation of all
cell areas in Lines 1–3. Next, we determine the asset region size
based on the area ratio of the asset group area and the core area
in Lines 4–8. 𝛼𝑥 and 𝛼𝑦 are two user-defined parameters to adjust
the position of the region of the asset group. Finally, Lines 9–12
determine the position and size of a routing blockage by expanding
the asset group region to prevent the regular routing wires from
getting too close to the shielding net created later. In our implemen-
tation, the parameter𝑚 is set to the minimum value that satisfies a
parallel run length spacing constraint.

3.3 Placement and Routing

After performing probing-aware pre-processing, the blockage
information is passed to the placer and router, and region-aware
placement and routing are performed. The region-aware placement
and routing are performed by a leading commercial tool in our
implementation. At this stage, any placer and router that honors
region constraints can also be used.

3.4 Probing-Aware Post-Processing

This step aims to create a large-scale shielding net to cover all
cell and net assets. First, we verify if all the net assets are routed
within the routing blockage boundary constructed at the probing-
aware pre-processing stage. If there exists any net asset which is
routed out of a blockage boundary, these net assets are deleted.
Then, we perform rip-up and reroute to ensure that all net assets
are routed inside the blockage boundary. Second, we remove the
routing blockage and select a high slack net that is not a net asset
to create a large-scale shielding net in the top metal layer to cover
both cell and net assets. The size of a shielding net is the same as a
routing blockage.

3.5 Trojan-Insertion-Aware Post-Processing

Even though using a high core utilization rate can effectively
reduce the majority of exploitable regions (Section 3.1), a few
exploitable regions may still remain. To eliminate remaining ex-
ploitable regions, we apply a cell moving-based greedy algorithm.
The algorithm contains three steps: (1) Exploitable Region Identifi-
cation, (2) Exploitable Region Elimination, and (3) Final Refinement.

Algorithm 2 Exploitable Region Identification
Input: a placed design, a cell assets list 𝐿𝑐 , exploitable distance 𝑑𝑒 ,

threshold 𝑡
Output: a set of exploitable region list 𝑆𝑒
1: Initialize 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 and 𝑆𝑒 variables
2: for each cell 𝑐𝑖 in 𝐿𝑐 do

3: if 𝑐𝑖 .𝑥 < 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦.𝑙𝑙 .𝑥 then

4: 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦.𝑙𝑙 .𝑥 ← 𝑐𝑖 .𝑥

5: else if 𝑐𝑖 .𝑥 > 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦.𝑢𝑟 .𝑥 then

6: 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦.𝑢𝑟 .𝑥 ← 𝑐𝑖 .𝑥

7: if 𝑐𝑖 .𝑦 < 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦.𝑙𝑙 .𝑦 then

8: 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦.𝑙𝑙 .𝑦 ← 𝑐𝑖 .𝑦

9: else if 𝑐𝑖 .𝑦 > 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦.𝑢𝑟 .𝑦 then

10: 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦.𝑢𝑟 .𝑦 ← 𝑐𝑖 .𝑦

11: 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦.𝑙𝑙 .𝑥 −= 𝑑𝑒 ; 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦.𝑢𝑟 .𝑥 += 𝑑𝑒
12: 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦.𝑙𝑙 .𝑦 −= 𝑑𝑒 ; 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦.𝑢𝑟 .𝑦 += 𝑑𝑒
13: for each row 𝑟𝑖 in rows intersects the 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 do

14: for each site 𝑠𝑖 in 𝑟𝑖 do

15: if 𝑠𝑖 is empty, unmarked, and inside the 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 then

16: (𝑛𝑢𝑚_𝑠𝑖𝑡𝑒 , 𝑠𝑖𝑡𝑒_𝑙𝑖𝑠𝑡 )← perform BFS(𝑠𝑖 )
17: if 𝑛𝑢𝑚_𝑠𝑖𝑡𝑒 >= 𝑡 then

18: 𝑆𝑒 ← 𝑠𝑖𝑡𝑒_𝑙𝑖𝑠𝑡
19: return 𝑆𝑒

3.5.1 Exploitable Region Identification. This step aims to identify
all exploitable regions to be removed. We first identify the smallest
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bounding box covering all cell assets. Next, we find the rows that
intersect with the bounding box and then iteratively scan an empty
site. Finally, we perform a breadth-first search (BFS) starting at the
empty site to check if the site can form a region with more than
the Trojan-placement threshold.

Algorithm 2 summarizes our identification algorithm. We first
initialize variables 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 that store lower-left and upper-right
coordinates, where 𝑆𝑒 stores a set of exploitable region lists to be
returned by Algorithm 2. Next, for each cell in the cell assets list,
find the lower-left and upper-right coordinates of all cell assets in
Lines 2–10. Then, we expand the bounding box based on a given
exploitable distance 𝑑𝑒 in Lines 11–12 because exploitable regions
are only evaluated within an exploitable distance related to cell
assets. Finally, Lines 13–18 for each row intersects the expanded
bounding box, iterates each empty site, and performs BFS to check
if the site can form an exploitable region. If so, we add a site list
returned by the BFS algorithm to 𝑆𝑒 and return it.

Free site Occupied site

(a)

𝑛!
𝑛"

𝑛#
𝑛$

𝑛%
𝑛&

(b) (c)

𝑛!

𝑛"

𝑛#

𝑛$

𝑛%

𝑛&

Row-based sub-region𝑛'

𝑛! Representative node

Figure 8. (a) An example of an exploitable region. (b) Row-based
sub-regions of the exploitable region. (c) The graph transformed
from (b).

3.5.2 Exploitable Region Elimination. This stage is to eliminate
exploitable regions identified in Section 3.5.1. Due to the effort in
Section 3.1, most designs should only remain sporadic exploitable
regions. Thus, we propose a fast cell-movement-based method to
eliminate the exploitable regions greedily. The objective is to maxi-
mize the gain, defined as the reduction of the total number of sites
in exploitable regions caused by cell movement.

First, a row-based graph𝐺 is constructed, as shown in Figure 8(c).
We partition an exploitable region into sub-regions, as shown in
Figure 8(b) and then transform each sub-region into a node with a
weight equal to the number of sites in the sub-region. Also, edges
are constructed to represent the connection of consecutive sub-
regions in adjacent rows.

Next, the exploitable regions are eliminated by separating them
into regions with the number of continuous sites less than the
Trojan-placement threshold. We initialize the cost with the number
of sites in the exploitable region, which is the summation of nodes’
weights in 𝐺 . For each node, we compute the gains obtained by
moving the unlocked cell around it to the free sites and select the
node with the maximal gain. For example, we calculate the gain
for node 𝑛2 by moving the cell 𝑐1, 𝑐2, and 𝑐3, respectively, from the
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Figure 9. An example of cell movement process to illustrate how to
determine which sub-region should be cut. (a) The original place-
ment. (b) 𝑐1 is moved to cut 𝑛2. (c) 𝑐2 is moved to cut 𝑛2. (d) 𝑐3 is
moved to cut 𝑛2.

original placement, as shown in Figure 9(a), deriving candidates, as
shown in Figures 9(b)–(d), and select 𝑛2 due to the highest gain of
Figure 9(d). After that, we determine if the movement operation is
legal by checking whether it creates new exploitable regions. The
cell will be moved to the designated sites if the movement holds,
and 𝐺 will be updated. Otherwise, we do not perform an actual
movement. Then, the cell is locked. The process is repeated until
the exploitable regions are removed, or the cells around exploitable
regions are all locked.

Our experimental results show that the algorithm can effectively
remove most exploitable regions. In rare cases, the remaining ones
will be tackled in Section 3.5.3.

3.5.3 Final Refinement. If exploitable regions still exist after exe-
cuting Exploitable Region Elimination. It implies that standard cells
around these exploitable regions are too small or too sparse to di-
vide the exploitable regions through cell movement. Thus, upsizing
nearby cells and/or inserting dummy buffers are applied to remove
all remaining exploitable regions.

4 EXPERIMENTAL RESULTS

# cells # cell assets # nets # net assets Utilization # Layers
AES_1 16509 336 (2.04%) 19541 468 (2.39%) 75.1% 10
AES_2 16509 336 (2.04%) 19541 468 (2.39%) 75.1% 10
AES_3 15836 322 (2.03%) 18868 461 (2.44%) 94.8% 10
Camellia 6710 265 (3.94%) 7094 384 (5.41%) 51.1% 6
CAST 12682 1886 (14.87%) 13050 1919 (14.70%) 51.3% 6
MISTY 9517 256 (2.68%) 9895 14 (0.14%) 51.6% 6

PRESENT 868 164 (18.89%) 1030 145 (14.07%) 50.6% 6
SEED 12682 4810 (37.92%) 13055 4938 (37.83%) 51.37% 6
TDEA 2269 168 (7.40%) 2592 168 (6.48%) 81.12% 6
SPARX 128 8146 (1.57%) 10786 2176 (20.17%) 50.99% 6

openMSP430_1 4690 1541 (32.85%) 5310 1393 (26.23%) 50.46% 6
openMSP430_2 5921 1839 (31.05%) 6307 1717 (27.22%) 80.09% 6

Table 1. Benchmark Statistics.
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Benchmark 1st place 2nd place 3rd place Ours
des ti fsp_fi des ti fsp_fi des ti fsp_fi des ti fsp_fi

AES_1 0.447645 0.000000 0.000000 0.475469 0.000000 0.000000 0.519014 0.000000 0.000000 0.427583 0.000000 0.000000
AES_2 0.425056 0.000000 0.000000 0.458233 0.000000 0.000000 0.509517 0.000000 0.000000 0.438185 0.000000 0.000000
AES_3 0.473199 0.000000 0.000000 0.498813 0.000000 0.000000 0.541594 0.000000 0.000000 0.485633 0.000000 0.000000
CAST 0.412035 0.000000 0.000000 0.409304 0.000000 0.000000 0.439133 0.000000 0.000000 0.396717 0.000000 0.000000

Camellia 0.398203 0.000000 0.000000 0.420739 0.000000 0.000000 0.418330 0.000000 0.000000 0.405498 0.000000 0.000000
MISTY 0.418306 0.000000 0.000000 0.396844 0.000000 0.000000 0.417127 0.000000 0.000000 0.387017 0.000000 0.000000

PRESENT 0.359781 0.000000 0.000000 0.427651 0.000000 0.000000 0.446817 0.000000 0.000000 0.363447 0.000000 0.000000
SEED 0.416061 0.000000 0.000000 0.442646 0.000000 0.000000 0.442510 0.000000 0.000000 0.414805 0.000000 0.000000
SPARX 0.397067 0.000000 0.000000 0.420406 0.000000 0.000000 0.404258 0.000000 0.000000 0.387243 0.000000 0.000000
TDEA 0.459273 0.000000 0.000000 0.526013 0.000000 0.000000 0.524128 0.000000 0.000000 0.484775 0.000000 0.000000

openMSP430_1 0.406426 0.000000 0.000000 0.440711 0.000000 0.000000 0.469361 0.000000 0.000000 0.401875 0.000000 0.000000
openMSP430_2 0.464010 0.000000 0.000000 0.543684 0.000000 0.000000 0.570014 0.000000 0.000000 0.460260 0.000000 0.000000

average 0.423089 - - 0.455043 - - 0.475150 - - 0.421087 - -
ratio 1.005 - - 1.081 - - 1.128 - - 1.000 - -

Table 2. Comparison of solution quality. The smallest design costs are marked in bold.

Our framework was implemented in the Tcl script language.
We conducted all experiments on an AMD Ryzen 3990X 2.9GHz
Linux workstation with 128GB memory. We used Cadence Innovus
18 for physical design from floorplan to routing. We adopted the
benchmark from the 2022 ACM ISPD Security Closure of Physical
Layouts Contest, where Table 1 gives the benchmark statistics,
including the number of cells (“# cells”), the number of cell assets (“#
cell assets”), the number of nets (“# nets”), the number of net assets
(“# net assets”) , utilization rate (“Utilization”), and the number
of metal layers (“# Layers”). The benchmarks contain different
crypto core designs and microcontrollers with varying complexity
ranges, timing constraints, utilizations, and the number of assets.
The diversity of the benchmarks, with the number of cells and
nets ranging from hundreds to ten thousand and the proportion
of assets ranging from 2.04% to 37.92%, allowed us to examine the
robustness of the framework proposed in this paper. All designs
were synthesized by the Synopsys Design Compiler with theNangate
45nm Open Cell Library [19]. Except for the AES series cases, other
cases are limited to six metal layers for routing.

To evaluate the proposed framework, we used the evaluation
scripts and the cost metric provided by the 2022 ACM ISPD Security
Closure of Physical Layouts Contest. The cost metric is defined as
follows:

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑜𝑠𝑡 =
𝑡𝑖 + 𝑓 𝑠𝑝_𝑓 𝑖

2
× 𝑑𝑒𝑠, (1)

where 𝑡𝑖 , which stands for the cost of Trojan insertion attack, is the
average of the placement sites and routing resources of exploitable
regions, 𝑓 𝑠𝑝_𝑓 𝑖 , which denotes the cost of frontside probing and
fault injection attacks, is the average of the exposed area of standard
cell and net assets, and 𝑑𝑒𝑠 , which represents the design cost, is
the mean of power, performance, area, and the number of DRC
violations.

Table 2 shows the experimental results. Our framework fully
protects the physical design layout and achieves the best scores
in terms of security cost. Furthermore, we still obtained the best
design score compared with all the participating teams. Specifically,
compared with the top-3 teams, we achieved a better average score
with 0.5%, 8.1%, and 12.8% smaller design costs, respectively. In
particular, we obtained the smallest design costs for seven out of
twelve benchmark circuits (marked in bold).

In our observation, the robustness of our framework against the
attacks is contributed by our two-stage security-aware processing
strategy, which provides a global view in the early stage before
placement and the local view in the latter stage after routing. For
Trojan insertion attack, we primarily tackle the problem by increas-
ing the utilization rate in the floorplanning stage, which reduces
the possible exploitable regions and provides sufficient resources
for Trojan-Insertion-Aware Post-Processing. For frontside probing
and fault injection attacks, we conduct the probing-aware region
planning before placement, which reserves the routing space for a
large-scale shielding net and assures that the cell and net assets are
placed and routed within the shielding region.

Furthermore, our better design scores result from our proper
trade-off between security and conventional design costs. That is,
we do not over-emphasize security and sacrifice the design cost. In
all security-aware processing, we are also dedicated to minimizing
the overhead of design costs. For example, in the region planning
stage of probing-aware pre-processing, we determine a suitable
region considering power, performance, and area. Also, in Trojan-
Insertion-Aware Post-Processing, we conduct the cell-movement
method before cell-resizing and/or buffer-insertion because the
overhead of the former method is smaller than the latter.

5 CONCLUSION

This paper has proposed a security-aware framework against
Trojan insertion, frontside probing attacks, and fault injection at-
tacks while minimizing extra design costs. A large-scale shielding
method has been proposed to cover all the exposed cell and net as-
sets. A cell movement method has also been proposed to eliminate
the exploitable regions with low overheads. Experimental results
have shown that our proposed framework achieves the highest
score among all participating teams in the 2022 ACM ISPD Contest.
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