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ABSTRACT
Boolean matching is to check the equivalence of two target
functions under input permutation and input/output phase
assignment. This paper addresses the permutation inde-
pendent (P-equivalent) Boolean matching problem. We will
propose a matching algorithm seamlessly integrating Sim-
ulation and Boolean Satisfiability (S&S) techniques. Our
proposed algorithm will first utilize functional properties like
unateness and symmetry to reduce the searching space. In
the followed simulation phase, three types of input vector
generation and checking method will be used to match the
inputs of two target functions. Experimental results on large
benchmarking circuits demonstrate that our matching algo-
rithm is indeed very effective and efficient to solve Boolean
matching for large Boolean networks.

Categories and Subject Descriptors: B.6.3 [Hardware]
Logic Design: Design Aids - Verification.
General Terms: Algorithms, Design, Verification.

Keywords: Boolean Matching, Simulation and SAT.

1. INTRODUCTION
Logic simulation technique had been widely used in de-

sign verification and debugging over a long period of time.
The major disadvantage of using simulation comes from the
fact that it is very time consuming and almost impossible to
catch completely the functionality of a very large Boolean
network. To solve this issue, Boolean satisfiability (SAT)
technique was proposed and exploited in many industrial
formal verification tools. In recent years, the technique of
combining simulation and SAT was popular and success-
fully applied in many verification and synthesis problems
like equivalence checking [1] and logic minimization [2]-[4].

Boolean matching is to check whether two functions are
equivalent or not under input permutation and input/output
phase assignment (so-called NPN-class). The important ap-
plications of Boolean matching involve the verification of two
circuits under unknown input correspondences, cell-library
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binding, and table look-up based FPGA’s technology map-
ping. In the past decades, various Boolean matching tech-
niques had been proposed and some of these approaches
were discussed in the survey paper [5]. Among those previ-
ously proposed approaches, computing signatures [5][6] and
transforming into canonical form [7][8] of Boolean functions
were the most successful techniques to solve Boolean match-
ing. Recently, SAT technique was also applied for Boolean
matching with don’t cares [9]. Most of these techniques were
proposed to handle completely specified functions, compar-
atively little research had focused on dealing with Boolean
functions with don’t cares [6][9].

The first and foremost issue for Boolean matching is the
data structure for representing Boolean functions. As we
know that many prior techniques used truth table, sum of
products (SOPs), and Binary Decision Diagrams (BDDs) to
represent the target functions during the matching process,
they suffer from the same memory explosion problem. By
our knowledge, many types of Boolean functions can not be
represented by SOPs for large input set and the memory
space will explode while constructing their BDD’s. There-
fore, these Boolean matching techniques were constrained to
apply for small to moderate Boolean networks (functions).
To address the above issues, And-Inverter Graphs (AIGs)
[10] had been utilized and successfully applied in verifica-
tion and synthesis problems [4][10]. In this paper, we will
propose a permutation independent (P-equivalent) Boolean
matching algorithm for large Boolean functions.

This paper is organized as follows. Section 2 gives a brief
research background on our work. Section 3 shows our pro-
cedure of detecting functional properties. Some definitions
and notations are given in Section 4. Section 5 presents our
simulation strategy for distinguishing the input variables of
Boolean functions. Section 6 and Section 7 show our S&S-
based matching algorithm with implementation issues and
the experimental results, respectively. Section 8 concludes
this paper and suggests some directions for the future work.

2. BACKGROUND
2.1 Boolean Matching

Boolean matching is to check the equivalence of two tar-
get functions f(X) and g(Y ) under input permutation and
input/output phase assignment. To solve this problem, we
have to search a feasible mapping ψ such that f(ψ(X)) =
g(Y ) (or ḡ(Y )). It is impractical to search all possible map-
pings because the time complexity is O(n! · 2n+1), where
n is the number of input variables. Among those previ-
ously proposed techniques for Boolean matching, signature
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Table 1: Definition and S&S-Based Checking of Functional Properties.
Property S&S Checking

Name
Definition Notation Disjoint Removal Condition SAT Check

Positive Unate fx̄i
⊆ fxi

PU(xi) xi f(v1) = 1, val(v1, xi) = 0 fx̄i
· f̄xi

= 0

Negative Unate fxi
⊆ fx̄i

NU(xi) xi f(v1) = 1, val(v1, xi) = 1 f̄x̄i
· fxi

= 0

NE Symmetry fx̄ixj
= fxix̄j NE(xi, xj) xi, xj val(v1, xi) �= val(v1, xj) fxixj

⊕ fxix̄j
= 0

E Symmetry fx̄ix̄j
= fxixj E(xi, xj) xi, xj val(v1, xi) = val(v1, xj) fx̄ix̄j

⊕ fxixj
= 0

fx̄ix̄j
= fxix̄j SV (xi, x̄j) xi val(v1, xj) = 0, ∀xj ∈ X − {xi} fx̄ix̄j

⊕ fxix̄j
= 0

Single Variable fx̄ixj
= fxixj SV (xi, xj) xi val(v1, xj) = 1, ∀xj ∈ X − {xi} fx̄ixj

⊕ fxixj
= 0

Symmetry fx̄ix̄j
= fx̄ixj SV (xj , x̄i) xj val(v1, xi) = 0, ∀xi ∈ X − {xj} fx̄ix̄j

⊕ fx̄ixj
= 0

fxix̄j
= fxixj SV (xj , xi) xj val(v1, xi) = 1, ∀xi ∈ X − {xj} fxix̄j

⊕ fxixj
= 0

is one of the most effective approaches. Various signatures
were defined to characterize input variables of Boolean func-
tions [5]. Since these signatures are invariant under the per-
mutation or complementation of input variables, the input
variables with different signatures can be distinguished with
each other and many infeasible mappings can be pruned
quickly. However, it had been proved that signatures have
the inherent limitation to distinguish all input variables for
those functions with G-symmetry [11].

2.2 Boolean Satisfiability
The Boolean Satisfiability (SAT) problem is to find a vari-

able assignment to satisfy a given conjunctive normal form
(CNF) or prove it is equal to the constant 0. Despite the
fact that SAT problem is NP-complete, many advanced tech-
niques like non-chronological backtracking, conflict driven
clause learning, and watch literals have been proposed and
implemented in the state-of-art SAT solvers [13][14]. Con-
sequently, SAT technique has been successfully applied on
solving many EDA problems [15] over the past decades.
Among these applications, combinational equivalence check-
ing (CEC) is an important one of utilizing SAT solver to
check the equivalence of two combinational circuits. The
following briefly describes the concept of SAT-based equiv-
alence checking. Consider two functions (circuits) f and g
to be verified. A miter circuit with functionality f ⊕ g is
constructed first and then transformed into a SAT instance
(circuit CNF) by simple gate transformation rules. If this
circuit CNF can not be satisfied by the SAT solver, then f
and g are equivalent; otherwise, they are not equivalent.

2.3 And-Inverter Graph
And-Invert Graphs (AIGs) is a directed acyclic graph

which can be used as the structural representation of Boolean
functions. It consists of three types of nodes: primary in-
put, 2-input AND, and constant 0(1). The edges with IN-
VERTER attribute denote the Boolean complementation.
It is easy to transform a Boolean network (function) into
AIGs by simple gate transformation rules. Moreover, it is
very fast to perform simulation on AIGs with respect to
(w.r.t.) a large set of input vectors at one time. How-
ever, it is unlike to the BDDs which is a canonical form
of Boolean functions w.r.t. a given input variable order-
ing. It may also have many functionally equivalent nodes
in the graph. In the paper [10], SAT sweeping and struc-
tural hashing techniques were applied to reduce the graph
size. More recently, Mishchenko et al. exploited SAT-based
equivalent checking techniques to remove equivalent nodes
while constructing an AIG, i.e., Functionally Reduced AIGs
(FRAIGs) [12]. By our experimental observation, FRAIGs
can represent many large Boolean functions that can not be
constructed as BDDs due to the memory explosion problem.

3. DETECTING FUNCTIONAL PROPERTY
Consider a function f(X) and an input xi ∈ X. The co-

factor of f w.r.t. xi is fxi = f(x1, · · · , xi = 1, · · · , xn). The
cofactor of f w.r.t. x̄i is fx̄i = f(x1, · · · , xi = 0, · · · , xn).
A function f is positive (negative) unate in variable xi if
fx̄i ⊆ fxi (fxi ⊆ fx̄i). Otherwise, it is binate in that vari-
able. Given two input variables xi, xj ∈ X, the definitions
of non-equivalence symmetry (NE), equivalence symmetry
(E), and single variable symmetry (SV ) of f w.r.t. xi and
xj are summarized in Table 1.

S&S approach is also applied to check functional symme-
try and unateness of target functions in our matching algo-
rithm. Instead of enumerating all items (possible functional
properties) and checking them directly, we exploit simula-
tion to quickly remove impossible items. For those items
that can not be removed by the simulation results, SAT
technique is exploited to verify them. Consider a function f
and some functional property p to be checked. Our detecting
procedure starts by using random simulation to remove im-
possible items as many as possible. If there still exist some
unchecked items, it repeats taking an item and checking it
with SAT technique until the taken item is a true functional
property of f . Guided simulation will then be used to filter
out the remaining impossible items. Rather than generating
pure random vectors, guided simulation will generate sim-
ulation vectors based on counter examples by SAT solving,
i.e., solutions of the SAT instance.

In order to remove impossible items, we generate many
pairs of random vectors (v1, v2)’s with Hamming distance
1 or 2 for simulation. The vector pairs with distance 1 are
used to remove functional unateness and single variable sym-
metries, while the pairs with distance 2 are used to remove
non-equivalence and equivalence symmetries. Suppose that
v1 and v2 are disjoint on input xi (and xj) if their distance
is 1 (2). Without loss of generality, let f(v1) �= f(v2) and
f(v1) = 1. The conditions for removing impossible func-
tional properties and SAT-based equivalence checking are
briefly summarized in Table 1, where the notation val(v1, xi)
denotes the value of xi in the vector v1.

4. DEFINITIONS AND NOTATIONS
Let P = {X1, X2, · · · , Xk} be a partition of input set X,

where
⋃k

i=1Xi = X and Xi ∩ Xj = ∅ for i �= j. Each Xi

is an input group w.r.t. P . The partition size of P is the
number of subsets Xi’s in P , denoted as |P |. The group size
of Xi is the number of input variables in Xi, denoted as |Xi|.

Definition 4.1. Given two input sets X and Y with the
same number of input variables, let PX = {X1, X2, · · · , Xk}
and PY = {Y1, Y2, · · · , Yk} be two ordered input parti-
tions of X and Y , respectively. A mapping relation
R = {G1, G2, · · · , Gk} is a set of mappings between the in-
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put groups of PX and PY , where Gi = Xi
Yi and |Xi| = |Yi|.

Each element Gi ∈ R is a mapping group which maps Xi

to Yi.

Definition 4.2. Consider a mapping relation R and a
mapping group Gi = Xi

Yi in R. The mapping relation
size is the number of mapping groups in R, denoted as |R|.
The mapping group size of Gi, denoted as |Gi|, is the
group size of Xi (or Yi), i.e., |Gi| = |Xi| = |Yi|.

Definition 4.3. Consider two functions f(X) and g(Y ).
Let R be a mapping relation and Gi = Xi

Yi be a mapping
group in R. Gi is unique if and only if |Gi| = 1 or Xi(Yi)
is a NE-symmetric set of f (g). The mapping relation R
is unique if and only if all the mapping groups in R are
unique.

Definition 4.4. Let vi be an input vector w.r.t. the input
set X. The input weight of vi is the number of inputs with
binary value 1. It is denoted as ρ(vi, X).

Definition 4.5. Consider a function f(X) and a vector
set V involving m distinct input vectors. The output weight
of f w.r.t. V is the number of vectors vi’s in V such that
f(vi) = 1. It is denoted as σ(f, V ) and 0 ≤ σ(f, V ) ≤ m.

5. SIMULATION APPROACH FOR DISTIN-
GUISHING INPUTS

The idea behind our simulation approach is the same as
the concept of exploiting signatures to quickly remove im-
possible input correspondences as many as possible.
Consider two target functions f(X) and g(Y ). Let
R = {G1, · · · , Gi, · · · , Gc} be the current mapping relation.
Without loss of generality, groups G1, · · · , Gi are assumed
non-unique while the remaining groups are unique. To parti-
tion a non-unique mapping group Gi = Xi

Yi , for each input
xj ∈ Xi (yj ∈ Yi), we generate a vector v or a set of vectors
V for simulation and use the simulation results as the signa-
ture of xj (and yj) w.r.t. f (and g). It can further partition
Gi into two or more smaller mapping groups by means of
these signatures. Suppose the mapping size of Gi is m, i.e.,
|Gi| = |Xi| = |Yi| = m. In the following, we will propose
three types of input vectors and show how to distinguish
input variables of Xi (and Yi) in terms of the simulation
results.

5.1 Type-1
We first generate c subvectors v1, · · · , vi, · · · , vc, where vi

is a random vector with input weight 0 or m, i.e., ρ(vi, Xi) =
ρ(vi, Yi) = 0 or m. For each input variable xj ∈ Xi (and
yj ∈ Yi), the subvector ṽi with input weight 1 or m − 1
can be obtained by complementing the value of xj (and yj)
in vi. The concatenated vector vj = v1| · · · |ṽi| · · · |vm will
then be used as input values for simulating on f (and g) and
its corresponding output value f(vj) (g(vj)) can be viewed
as the signature of xj (yj). Fig. 1 demonstrates the vector
set Vi used to partition Gi, where Ai is the set Xi or Yi.
Each vector (row) in Vi is dedicated to an input variable in
Xi (Yi). Using such a set Vi for simulation, in most cases,
Xi (Yi) can be partitioned into two subsets Xi0 (Yi0) and
Xi1 (Yi1), where the signatures of input variables in these
two sets are output value 0 and 1, respectively. Therefore, Gi

can be divided into two mapping groups Gi0 = Xi0
Yi0 and

Gi1 = Xi1
Yi1 . Moreover, in our matching algorithm all non-

unique mapping groups can be partitioned simultaneously.

Figure 1: Type-1 Simulation Vectors Vi of Gi.

Figure 2: Type-2 Simulation Vectors Vj.

5.2 Type-2
For each input xj ∈ Xi (yj ∈ Yi), a vector set Vj involving

|Gi|−1 vectors with weight 2 or m−2 will be generated. For
simplicity, Fig. 2 only shows out the subvectors w.r.t. the
input setXi while the subvectors w.r.t. the remaining inputs
sets can be generated like the initial subvectors vi’s of Type-
1. Consider a vector in Vj . We assign 1 (or 0) to the input
variable xj and one of the remaining inputs, while the other
inputs are assigned 0 (or 1). After the simulation, the output
weight σ(f, Vj) (σ(g, Vj)) will be used as the signature of
xj (yj). The input variables with the same output weight
can match to each other. Consequently, we can partition Gi

into at most m groups because of 0 ≤ σ(f, Vj) ≤ m − 1.
Moreover, if there exists some input xj ∈ Xi which can
uniquely map to an input yj ∈ Yi, we can apply Type-1
checking to further partition the set Xi − {xj} (Yi − {yj})
using the simulation results for the vector set Vj .

5.3 Type-3
The third type of vectors can only be used for the map-

ping group Gi = Xi
Yi , where Xi and Yi involves several

NE-symmetric sets. The idea is mainly based on functional
symmetry that function f is invariant under the permuta-
tion of inputs in its NE-symmetric set. Suppose Xi consists
of e symmetric set S1, S2, · · · , Se each with k input vari-
ables. To partition the group Gi, two random vectors a1

and a2 with different input weight w1 and w2 will be gen-
erated, where 0 ≤ w1, w2 ≤ k. For each symmetric set Si,
we then generate a vector vi by assigning a2 and a1’s to
Si and the remaining sets, respectively. Fig. 3 shows only
the weight distribution of vectors vi’s, where vi is dedicated
to Si for simulation. As to the other mapping groups, the
weights of their subvectors must be 0 or |Gi| like we used
in Type-1. Using such a vector set for simulation, we can
partition S1, S2, · · · , Se into two groups of symmetric sets
which have output simulation value 0 and 1, respectively. It
is easy to show that at most k× (k+ 1) combinations of w1

and w2 are required for this type of checking.
Our matching algorithm checks that f(X) and g(Y ) can

not match to each other using the following observation.

Observation 5.1. Consider a non-unique mapping group
Gi = Xi

Yi . Through the simulation and checking steps as
we described above, let PXi and PYi be the resultant par-
titions w.r.t. to Xj and Yj, respectively. For each group
A ∈ PXi , there is a corresponding group B ∈ PYi . The
following shows two situations that f(X) and g(Y ) can not
match to each other:
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Figure 3: Type-3 Simulation Vectors of Gi.

• |PXj | �= |PYj |, i.e., their partition sizes are different.

• |A| �= |B|, i.e., their set sizes are different.

6. S&S-BASED MATCHING ALGORITHM
6.1 Our Matching Algorithm

Our S&S-based Boolean matching algorithm shown in
Fig. 4 can match two target functions f(X) and g(Y ) under
a threshold bound, i.e., the maximum number of simulation
rounds. It is mainly divided into three phases: Initializa-
tion, Simulation, and Recursion. In the Initialization phase,
it exploits functional symmetries and unateness to initialize
the mapping relation R followed by computing the maxi-
mum number of mapping groups in R, denoted as MaxSize.
Since the input variables in an NE-symmetric set can be
permuted without affecting the functionality, MaxSize is
equal to the number of NE-symmetric sets adding the num-
ber of non-symmetric inputs. It is the upper bound used
to check the first terminating condition of the second phase.
In the Simulation phase, it improves the mapping relation
R by the Simulate-and-Update procedure implementing the
simulation approach described in Section 5. This step is re-
peated until it can find a unique mapping relation R with
|R| = MaxSize or no improvement can be made to R under
the threshold bound. If this phase is ended by the second
terminating condition, it calls the Recursive-Matching pro-
cedure and enters into the Recursion phase to search the fi-
nal mapping relation. Otherwise, the SAT-Verify procedure
exploiting SAT technique is called to verify if two target
functions are matched under the unique mapping relation R
searched by the Simulation phase.

6.2 Recursive Matching Algorithm
Fig. 5 shows our recursive matching algorithm. Consider

target functions f , g, a mapping relation R, and the size
bound MazSize of R. It starts by checking if R is unique
and so to verify R using SAT technique. For the case that
R is not unique, the smallest non-unique mapping group
Gi = Xi

Yi in R will be selected to be partitioned. Consider
the mapping of an input xj ∈ Xi to an input yk ∈ Yi. It

will partition Gi into two mapping groups A = {xj}{yk} and

B = (Xi − {xj})Yi−{yk}. With such a partitioning, we can
derive a new mapping relation tmpR = R ∪ T − {Gi} with
mapping relation size |R| + 1, where T = {A,B} is derived
from Gi. Simulate-and-Update procedure is then called to
further improve tmpR and return a new mapping relation
NewR. If NewR is not empty, it will call itself again; oth-
erwise, it indicates a wrong selection of input mapping. In
addition, this algorithm can be easily modified to find all
feasible mapping relations as shown in Fig. 5.

6.3 Implementation Issues
6.3.1 Control of Random Vector Generation

By our experimental results, most of the runtime was con-
sumed by the simulation phase for some benchmarking cir-
cuits. The reason is that too many random vectors gener-

Algorithm S&S-Boolean-Matching(f(X), g(Y ), threshold)

Input: f and g are target functions;

threshold: the maximum # of simulation rounds;

Output: ∅ or ψ, i.e., the feasible mapping relation of f and g;

Begin

ψ = ∅; cnt = 0;

R =Initial-Mapping(f, g); // Phase 1

MaxSize = #NE Classes + #Non Symm Inputs;

while (|R| < MaxSize and cnt < threshold) do

NewR = Simulate-And-Update(f, g,R); // Phase 2

if (NewR = ∅) return ∅;
if (|R| == |NewR|) then

cnt = cnt+ 1; // no improvement made on R

else

R = NewR; cnt = 0;

endif

endwhile

if (|R| < MaxSize) then

ψ = Recursive-Matching(f, g, R,MaxSize); // Phase 3

else

if (SAT-Verify(f, g,R) is TRUE) ψ = R;

endif

return ψ;

End

Figure 4: Our Boolean Matching Algorithm.

ated for simulation are useless to improve current mapping
relation. Thus it will incur a large amount of iterations on
the simulating and updating steps in this phase. Instead of
generating random vectors without using any criterion, we
propose a simple heuristic to control the generation of two
adjacent random vectors. Let v1 be the first random vector.
The second vector v2 can then be generated by randomly
complementing n/2 inputs in v1, where n is the number of
input variables of target functions. We expect it can evenly
distribute the random vectors in the Boolean space and so
that it can quickly converge to find feasible mapping rela-
tion. Our experimental result shows the runtime can be
greatly reduced for some circuits.

6.3.2 Reduction of Simulation Time
Our matching algorithm can be easily extended to deal

with Boolean functions with multiple outputs. While match-
ing two target functions with multiple outputs, we can re-
duce the simulation time by utilizing the mapping relation
found so far. Clearly, the more the unique mapping groups
we find, the less the number of outputs with indistinguish-
able inputs is. So, rather than simulating the whole Boolean
network, simulating the subnetwork involving these outputs
and their transitive fanin nodes is enough. Our experimental
result reveals that our matching algorithm can reduce the
runtime significantly as it approaches the end of matching
process.

6.3.3 Analysis of Space Complexity
During the simulation process, we need to store the sim-

ulation vectors for all nodes in the Boolean network. Let
the number of inputs and number of nodes in the Boolean
network be I and N, respectively. The memory space used
by our matching algorithm is M × I × N words (4 bytes),
where M is an adjustable parameter, i.e., the number of sets
used in each simulation round. The smaller M means that
it can reduce the storage space and simulation time in a
simulation round. On the contrary, it may need more sim-
ulation rounds to improve the mapping relation. Besides,
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Algorithm Recursive-Matching(f(X), g(Y ), R,MaxSize)

Input: f and g are target functions;

R: the current mapping relation;

MaxSize: the maximum size of mapping relation R;

Output: ∅ or ψ, i.e., the feasible mapping relation of f and g;

Begin

if (|R| == MaxSize) then // the terminating condition

if (SAT-Verify(f, g, R) is TRUE) return R;

return ∅;
endif

Gi = the smallest non-unique mapping group in R;

ψ = ∅; Choose an input xj ∈ Xi;

for each possible mapping relation T w.r.t. Gi do

tmpR = R ∪ T − {Gi};
NewR = Simulate-And-Update(f, g, tmpR);

if (NewR �= ∅)
ψ = Recursive-Matching(f, g,NewR,MaxSize);

// comment the next line if to find all solutions

if (ψ �= ∅) return ψ;

endfor

return ψ;

End

Figure 5: Recursive Matching Algorithm.

Table 2: Matching Results for Threshold 1000
CPU Time (sec.)

#Input #Circuit #Solved Min Avg Max
4∼10 31 31 0.00 0.04 0.30
11∼20 21 21 0.01 0.55 8.04
21∼30 14 14 0.03 0.21 1.29
31∼40 10 9 0.07 1.16 4.79
41∼50 8 8 0.22 2.94 5.83
51∼257 28 26 0.14 2.57 17.56

it may stop the simulation phase early, and thus enter into
the recursive matching phase. If there exist many large non-
unique mapping groups, then the runtime will increase sig-
nificantly because it may incur a large amount of simulation
and SAT verification on infeasible mapping relations.

7. EXPERIMENTAL RESULTS
The proposed S&S-based Boolean matching algorithm had

been implemented into Berkeley’s ABC system on the Linux
platform with dual Intel Xeon 3.0 GHz CPU’s. To demon-
strate the efficiency of our algorithm, MCNC and LGSyn
benchmarking sets were tested in our experiments. For each
tested circuit, we randomly permuted its input variables to
generate a new circuit for being matched. In addition, to
make our experimental results more convincible, we restruc-
tured this new circuit by executing a simple script file includ-
ing some synthesis commands offered by ABC. Two sets of
experiments were conducted to test our matching algorithm.

The first experiment was conducted to search all feasible
mapping relations on 112 circuits with input number ranging
from 4 to 257. The experimental results showed that three
circuits C6288, i3, and o64 can not be solved within 5000
seconds. To dissect these circuits, we found that one of the
two mapping relations of C6288 can not be verified by SAT
technique while the other two circuits have a large amount of
feasible mapping relations because they owns a great many
G-symmetries [11]. If only to search one feasible mapping,
the execution times for i3 and o64 are 0.49 sec. and 8.67 sec.,
respectively. The experimental results were summarized in
Table 2 w.r.t. the circuit input size. In this table, the first
two columns show the input ranges of benchmarking circuits
and number of circuits in different input ranges, respectively.

Table 3: Comparison on the Effects of Three Phases

Functional Property(1)

+Unate +Symm +SVS
+Sim.(2) +Rec.(3)

#Circuit 19 49 71 94 109
#Inc 19 30 22 23 15

ratio (%) 17.4 44.9 65.1 86.2 100

Table 4: The Results of Circuits with Inputs > 50
#Sol CPU Time (sec.)

Circuit #I #O
O S Orig Unate +Symm

apex3 54 50 1 1 0.10 0.10 0.38
apex5 117 88 144 1 7.11 2.96 0.68
apex6 135 99 2 1 1.86 0.42 0.33
C2670 233 140 - 2 * * 7.96
C5315 178 123 4 1 6.31 2.86 3.29
C7552� 207 108 - 1 * * 14.56
C880 60 26 8 1 0.28 0.20 0.25
dalu 75 16 2 1 1.20 3.36 5.47
des 256 245 1 1 10.21 0.25 2.33
e64 65 65 1 1 0.01 0.79 0.32
ex4p 128 28 - 4096 * * 6.08

example2 85 66 1 1 0.05 0.02 0.23
frg2 143 139 1 1 0.45 0.10 0.72
i10 257 224 48 2 25.63 15.16 17.56
i2 201 1 - 1 * * 1.02
i4 192 6 - 1 * * 0.22
i5 133 66 1 1 0.18 0.03 0.35
i6 138 67 1 1 0.50 0.02 0.14
i7 199 67 1 1 0.82 0.04 0.19
i8 133 81 1 1 0.57 0.06 0.40
i9 88 63 1 1 0.18 0.03 0.16

pair 173 137 1 1 0.84 0.64 2.44
rot 135 107 72 1 3.79 1.69 1.25
x1 51 35 2 1 0.17 0.13 0.14
x3 135 99 2 1 2.05 0.28 0.32
x4 94 71 2 1 0.62 0.37 0.15

Total > 25063 > 25029 66.94
Avg > 964 > 963 2.57

-: unknown *: CPU time > 5000 sec. �: memory explosion

The third column labeled #Solved shows the number of
circuits solved by our matching algorithm. The next three
columns Min, Avg, and Max show the minimum, average
and maximum runtime for the solved circuits, respectively.
It shows that our algorithm is very efficient for the circuits
with moderate to large input sets.

For those solved circuits, we also compared the effective-
ness of three phases and the comparison results were shown
in Table 3. The rows labeled #Circuit and #Inc show the
number of circuits that have been matched successfully and
the number of increased matched circuits in each individ-
ual step, respectively. In the first phase, we compared the
effect of incrementally applying different functional prop-
erties. The columns named as +Unate, +Symm, and
+SVS show the results of only using unateness, adding
E&NE symmetry, and adding SV symmetry, respectively.
It is clear that the more functional properties are used, the
more circuits can be solved in the first phase. It shows that
71 and 94 circuits can be solved after the first phase and the
second (simulation) phase, respectively. All the remaining
circuits can be solved by the third (recursion) phase.

Table 4 shows the experimental results for those circuits
with input size greater than 50. The first three columns la-
beled Circuit, #I, and #O show the circuit name, number
of input variables, and number of outputs in this benchmark-
ing circuit, respectively. The next two columns O and S are
the numbers of mapping relations found by our matching
algorithm without using and using functional properties. It
should be noted that the solutions induced by NE-symmetry
is not taken into account on the numbers shown in the S
column. Moreover, the numbers greater than one indicate
that these benchmarking circuits own G-symmetry. The last
three columns named as Orig, Unate, and +Symm com-
pare the execution times of without using functional prop-
erty, using only functional unateness, and adding functional
symmetries, respectively. The result shows that there are
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Table 5: Benchmarking Results for s-Series Circuits

CPU Time (sec.)
Circuit #I #O #N #BDD Symmetry #Sol Orig Unate +Symm

First All First All First All SAT
s4863 † 153 120 3324 56691 1(8),1(9) 4 · 8! · 9! * * 2.56 * 1.87 1.88 0.01

s3384 264 209 2720 882 22(2) 222 4.79 * 2.14 * 4.02 4.02 0.00

s5378 199 213 2850 � 4(2),1(5),1(7) (2!)4 · 5! · 7! 1.31 * 3.38 * 2.42 2.42 0.00

s6669 † 322 294 4978 22957 32(2), 1(17) 4 · 232 · 17! 6.30 * 2.83 * 4.08 50.54 46.50
s9234.1 247 250 4023 4545 - 1 3.41 3.41 5.84 5.84 7.82 7.82 0.00
s38584.1 1464 1730 26702 22232 1(3),1(9) 3! · 9! 76.31 * 210.13 * 457.82 457.82 0.03

s38417 1664 1742 23308 55832099 2(2),1(3) (2!)2 · 3! 91.81 * 324.57 * 998.53 998.55 0.13

Total 183.93 551.45 1476.56 1523.05 46.67
Avg 30.66 78.78 210.94 217.58 6.67
Ratio 0.15 0.37 1.00 1.03 0.03

†: circuits own G-symmetry -: no symmetry m(n): m NE-symmetric sets with n inputs *: CPU time > 5000 sec. �: memory explosion

5 out of 26 circuits can not be solved by our matching al-
gorithm without using full functional property within 5000
seconds. The reason why this situation occurs is that these
circuits have a great many NE-symmetries. However, it can
resolve all cases if functional symmetries are utilized to re-
duce the searching space. The average runtime of using full
functional property is 2.57 second. It clearly reveals that
our S&S-based matching algorithm is indeed effective and
efficient for solving the Boolean matching problem. In this
experiment, the BDD’s of these circuits were also built for
comparison with AIGs. It shows the circuit C7752 had the
memory explosion problem while constructing BDD without
using dynamic ordering.

In order to test our matching algorithm on very large
Boolean networks, the second experiment was conducted to
test the circuits in ISCAS89 benchmarking set. Since these
circuits are sequential, we executed the comb command in
ABC to transform them into combinational circuits. Table 5
shows the partial experimental results. For each circuit, the
columns #N, #BDD, Symmetry, and #Sol show the
number of nodes in the Boolean network (AIG), number of
nodes in the constructed BDD, NE-symmetry, and number
of feasible mappings. The CPU times of finding the first
feasible mapping, finding all feasible mapping relations, and
performing SAT verification of two target circuits are shown
in the First, All, and SAT columns, respectively. The ex-
perimental results show that our algorithm can not find all
feasible mappings for those circuits with a great many NE-
symmetries unless we detect them in advance. It also reveals
that only searching the first feasible mapping relation with-
out using symmetry is faster than the one using symmetry in
some cases. The reason why this situation occurs is that it
took too much time on detecting symmetries for the circuits.
The result also shows only a very small amount of runtime
was consumed by SAT verification for all circuits except the
s6669 circuit. Besides, the AIG size was far less than the
BDD size in many tested circuits and the s5378 circuit had
the memory explosion problem. In summary, our S&S-based
Boolean matching algorithm can be easily adjusted to fulfill
different requirements for large Boolean networks.

8. CONCLUSIONS
We had proposed a S&S-based Boolean matching algo-

rithm in this paper. Three types of input vectors were gen-
erated for simulation and their simulation results were used
to distinguish the inputs of two target functions. Our match-
ing algorithm had been tested on a set of large benchmark-
ing circuits. The experimental results reveal that our algo-
rithm is indeed effective and efficient for solving the Boolean

matching problem on very large functions. The future work
will be dynamically adjusting threshold value in the simula-
tion process and extending our matching algorithm to deal
with input/output phase assignment.
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