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added to update the original data set and second, another round
of the PWL fitting using updated data set is performed. It has
been found that added data points in this extra fitting is mostly
less than 100 in our experiment. Therefore, the suggested
model refinement does not incur any significant complexity
penalty. Table VI shows the fitting errors on the extended data
set. Compared with Table III, both mean and maximum error
over extended data set do not change appreciably, implying
that the model quality will not exhibit sharp degradation when
used in real circuit optimizations.

V. Conclusion

This paper presented an alternative method for fitting a
convex PWL function to a given set of data. The method
iteratively solved linear optimization problems by judiciously
increasing the number of planes in the PWL function at each
iteration. The proposed heuristic is simple, but experimental
results applied to the FET models in 90-nm CMOS technology
indicate that the method works well in practice, and the
computational complexity is not excessive. Therefore, the
proposed technique can be used as an efficient modeling
framework for circuit optimization via GP.
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Fast Node Merging with Don’t Cares Using Logic
Implications
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Abstract—Node merging is a popular and effective logic restructuring
technique that has recently been applied to minimize logic circuits.
However, in the previous satisfiability (SAT)-based methods, the search for
node mergers required trial-and-error validity checking of a potentially
large set of candidate mergers. Here, we propose a new method, which
directly identifies node mergers using logic implications without any SAT
solving calls. Although the efficiency benefits of the method come at the
expense of quality, we further engage the redundancy removal and the
wire replacement techniques to enhance its quality. The experimental
results show that the proposed optimization method achieves approxi-
mately 46 times the speedup while possessing a competitive capability
of circuit minimization compared to the state-of-the-art method.

Index Terms—Algorithms, circuit optimization, node merging, observ-
ability don’t cares (ODCs).

I. Introduction

Node merging is a popular and efficient logic restructuring
technique. It replaces a node with another node when the
two are functionally equivalent or their functional differences
are never observed at any primary output (PO). A major
application of the technique is to minimize logic circuits.
When two nodes are merged, one can be removed from the
circuit, and this merger may cause other redundancies in the
circuit such that the resultant circuit is minimized.

In previous works [4], [7], [11], [13], the methods for
finding node mergers are satisfiability (SAT)-based methods.
They perform random simulation, collect candidate mergers,
and then use a SAT solver to check the validity of the
candidate mergers. The work in [7] collects the candidate
mergers that have the same simulation values and finds only
functionally equivalent node mergers. Extending the work in
[7], the method in [13] identifies additional node mergers
whose functional differences are unobservable at any PO by
considering observability don’t cares (ODCs) in the process of
collecting candidate mergers. However, because full observ-
ability computation is very time-consuming, the method sets
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a k-bounded depth to extract local ODCs. With larger values
of k, the method can find more node mergers but spends more
central processing unit (CPU) time.

The work in [11] proposed a fast simulator that computes
global but approximate ODCs from any depth. Although this
method cannot identify the complete set of node mergers,
it finds an average of 25% more node mergers compared
to the local ODC-based method with k = 5 [13]. Further-
more, the work in [4] extended the node-merging technique
for sequential circuit optimization by considering sequential
ODCs.

Although both the works in [13] and [11] proposed methods
to decrease the complexity of observability computation, they
cannot avoid a potentially large number of SAT solving calls.
Thus, in this paper, we propose a non-SAT-based method for
detecting node mergers. Given a target node, we compute the
mandatory assignments for the stuck-at 0 and 1 fault tests on
it using logic implications. Then, we can derive its substitute
nodes directly from the mandatory assignments without trial-
and-error checking. To achieve high efficiency, we do not
compute all mandatory assignments due to the exponential
time complexity, and thus, spend some quality. For circuit size
reduction, we extend the method with three techniques—wire
replacement, redundancy removal, and mandatory assignment
reuse—that can enhance its performance.

We conduct experiments on a set of IWLS 2005 benchmarks
[14]. The experimental results show that the proposed method
can quickly complement the local ODC-based method with
k = 5 by finding additional node mergers. Additionally, for
circuit size reduction, the proposed method has a speedup of
46 times for overall benchmarks while possessing a competi-
tive capability compared to the state-of-the-art method [11].

The rest of this paper is organized as follows. Section II
uses an example to demonstrate ODC-based node merging.
It also reviews the related concepts in very-large-scale inte-
gration (VLSI) testing used in this paper. Sections III and IV
present the proposed method for finding node mergers and its
application for circuit minimization. Finally, the experimental
results and conclusion are presented in Sections V and VI.

II. Preliminaries

A. Example

We use an example in Fig. 1 to demonstrate ODC-based
node merging. The circuit in Fig. 1(a) is presented by using
an and-inverter graph (AIG). Here, a, b, c, and d are primary
inputs (PIs). v1–v5 are 2-input and gates. Their connectivities
are presented by directed edges. A dot marked on an edge
indicates that an inverter inv is in between two nodes. In this
circuit, v1 and v3 are not functionally equivalent. Merging
them potentially affects the overall functionality. However,
their values only differ when d = 1 and b = c. Since b = c

further implies v2 = 0, which is an input-controlling value of
v5, the different values of v3 with respect to v1 are prevented
from being observed. Thus, v3 can be correctly replaced with
v1. The resultant circuit is shown in Fig. 1(b).

In this paper, a node to be replaced is referred to as a target
node and a node that can correctly replace a target node is
called a substitute node of the target node.

Fig. 1. Example of ODC-based node merging. (a) Original circuit.
(b) Resultant circuit of replacing v3 with v1.

For ease of discussion, we only consider circuits presented
as AIGs. Circuits having complex gates can also be handled
by first transforming them into AIGs.

B. Background

An input of a gate g has an input-controlling value of
g if this value determines the output value of g regardless
of the other inputs. The inverse of the input-controlling
value is called the input-noncontrolling value, e.g., the
input-controlling value of an and gate is 0 and its input-
noncontrolling value is 1. A gate g is in the transitive fanout
cone of a gate gs if there exists a path from gs to g.

The dominators [6] of a gate g (or a wire w) are a set of
gates G such that all paths from g (or w) to any PO have to
pass through all gates in G. Consider the dominators of a gate
g (or a wire w): the side inputs of a dominator are its inputs
that are not in the transitive fanout cone of g (or w).

In VLSI testing, a stuck-at fault is a fault model used to
represent a manufacturing defect within a circuit. The effect
of the fault is as if the faulty wire or gate were stuck at either 1
(stuck-at 1) or 0 (stuck-at 0). A stuck-at fault test is a process
for finding a test that can generate different output values in
the fault-free and the faulty circuits. Given a stuck-at fault f ,
if there exists such a test, f is said to be testable; otherwise,
f is untestable. To make a stuck-at fault on a wire w testable,
a test needs to activate and propagate the fault effect to a PO.
In a combinational circuit, an untestable stuck-at fault on a
wire indicates that the wire is redundant and can be replaced
with a constant value 0 or 1. Similarly, if a stuck-at fault on a
gate is untestable, all the wires led by the gate can be replaced
with a constant value.

The mandatory assignments (MAs) are the unique value
assignments to nodes necessary for a test to exist. Consider
a stuck-at fault on a wire w; the assignments obtained by
setting w to the fault-activating value and by setting the side
inputs of dominators of w to the fault-propagating values are
MAs. Then, these assignments can be propagated forward and
backward to infer additional MAs using logic implications.
Recursive learning [8], a learning technique in automatic test
pattern generation (ATPG), whose complexity is exponential
to the recursion depth can be used to infer more MAs. If the
MAs of the fault are inconsistent, the fault is untestable, and
therefore, w is redundant [12].

For convenience, in the rest of this paper, we use MAs(m =
sav) to denote the set of MAs for the stuck-at v fault test on m,
where m can be a node or a wire and v is a logical value 0 or 1.
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III. Substitute Node Identification

The method for identifying substitute nodes is similar to
that in the work in [5], and thus, we briefly outline it here.
For details of the method, the reader is referred to [5].

Replacing a node nt with another node ns can be considered
setting a replacement error in a circuit, and it can be modeled
as the misplaced wire error which is included in the typical
design error models [1]. If no input pattern that can detect the
error exists, the error is undetectable and nt can be correctly
replaced with ns. Thus, finding substitute nodes of nt is
equivalent to finding the nodes such that the errors of using
these nodes to replace nt are undetectable.

To detect the error of replacing nt with ns, an input pattern
must generate different values for nt and ns to activate the
error effect of nt 	= ns, and propagate the value of nt to a PO
to make the error effect observable. When we can ensure that
no input pattern can simultaneously activate and propagate the
error effect, this replacement error is undetectable. Condition 1
below states a sufficient condition for ns to be a substitute node
of nt based on the concept of the undetectable replacement
error.

Condition 1: If ns = 1 and ns = 0 are MAs for the stuck-at 0
and stuck-at 1 fault tests on nt , respectively, ns is a substitute
node of nt .

Because nt = 1 is an MA for the stuck-at 0 fault test
on nt , if ns = 1 is also an MA, no input pattern can
simultaneously generate {ns = 0, nt = 1} and make nt = 1
observable. Similarly, if ns = 0 is also an MA for the stuck-
at 1 fault test on nt , no input pattern can simultaneously
generate {ns = 1, nt = 0} and make nt = 0 observable. Thus,
Condition 1 is established. Based on Condition 1, we can
identify the substitute nodes of a target node nt by computing
MAs(nt = sa0) and MAs(nt = sa1).

In Fig. 1(a), e.g., consider finding the substitute nodes of
v3. First, we compute MAs(v3 = sa0). To activate the fault
effect, v3 is set to 1. To propagate the fault effect, v2 is set to
1. We then propagate {v3 = 1, v2 = 1} forward and backward
to infer additional MAs using logic implications. The MAs are
{v3 = 1, v2 = 1, d = 1, c = 0, b = 1, v1 = 1, v4 = 0, v5 = 1}.
Second, we use the same method to compute MAs(v3 = sa1).
The MAs are {v3 = 0, v2 = 1, d = 0, c = 0, b = 1, v1 = 0,
v5 = 0}. Finally, d and v1 are determined to be the substitute
nodes of v3 due to the satisfaction of Condition 1. Although v5

also satisfies Condition 1, it is excluded from being a substitute
node of v3. This is because v5 is in the transitive fanout cone
of v3, replacing v3 with v5 will result in a cyclic combinational
circuit.

This example shows that our method can simultaneously
find more than one substitute node without trial-and-error
checking. It is helpful if there are many substitute nodes that
can be chosen to replace a target node when we consider
various applications of the node-merging technique.

Furthermore, Condition 1 can be modified by reversing the
value of ns to find complemented substitute nodes that replace
a target node together with an additional inv, i.e., if ns = 0
and ns = 1 are MAs for the stuck-at 0 and stuck-at 1 fault tests
on nt , respectively, nt can be replaced by ns together with an
additional inv.

Fig. 2. Example of wire replacement. (a) Original circuit. (b) Resultant
circuit of replacing w(v1 → v5) with w(v6 → v5). (c) Resultant circuit of
replacing w(v1 → v6) with w(a → v6) together with an INV. (d) Resultant
circuit of removing v1.

Thus, to identify substitute nodes for a target node nt , we
require only two MA computations: one is for the stuck-at 0
fault test on nt and the other one is for the stuck-at 1 fault
test on nt . Then, nodes that have different values in the two
MA sets and are not in the transitive fanout cone of nt , are
the substitute nodes.

The quality of the method depends on the completeness
of the MA computations. Although computing more MAs
could derive more substitute nodes, it has an exponential time
complexity. Thus, instead of computing all MAs, we use the
dominator-based MA computation method followed by the
recursive learning technique [8] with the recursion depth 1
to balance quality and efficiency.

IV. Circuit Size Reduction

In this section, we present a circuit optimization algorithm
based on the proposed node-merging method. Additionally,
we introduce three techniques: wire replacement, redundancy
removal, and MA reuse, which are engaged to enhance the
performance of the algorithm.

A. Wire Replacement

Replacing a node nt with another node ns can be regarded as
a rewiring process, where all the wires led by nt are replaced
by the added wires led by ns. For the objective of removing a
target node, regardless of whether the added wires are led by
a single source node, the target node can be removed as well
when all the wires it leads are replaced.

In Fig. 2(a), e.g., v1 has no substitute node. However, the
wire w(v1 → v5) can be replaced with the wire w(v6 → v5)
as shown in Fig. 2(b), and then the wire w(v1 → v6) can be
replaced with the wire w(a → v6) together with an inv as
shown in Fig. 2(c). Thus, we can remove v1, and the resultant
circuit is shown in Fig. 2(d).

For consistency, we name the wire to be replaced a target
wire and the added wire that can replace the target wire a
substitute wire. To find a substitute wire, we also propose a
sufficient condition as presented in Condition 2.

Condition 2: If ns = 1 and ns = 0 are MAs for the stuck-
at 0 and stuck-at 1 fault tests on w(nt → ni), respectively,
w(ns → ni) is a substitute wire of w(nt → ni).

The reason why Condition 2 is established is similar to
that of Condition 1. When Condition 2 is satisfied, no input
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pattern can simultaneously generate different values for ns and
nt , and make the value of nt observable through w(nt → ni).
Similarly, Condition 2 can be modified by reversing the value
of ns to find complemented substitute wires that replace a
target wire together with an additional inv.

Let us review the example in Fig. 2(a). The MAs for the
stuck-at 0 fault test on w(v1 → v5) are {v1 = 1, a = 0, b = 1,
c = 1, v2 = 1, v6 = 1} and the MAs for the stuck-at 1 fault test
on w(v1 → v5) are {v1 = 0, v6 = 0, c = 1}. Thus, w(v1 → v5)
can be replaced with w(v6 → v5). Next, using the same
method in Fig. 2(b), we can find that w(v1 → v6) can be
replaced with w(a → v6) together with an inv, as shown in
Fig. 2(c). Finally, we can remove v1 because it does not lead
any wires.

B. Redundancy Removal

As mentioned in Section II-B, if the MAs of a stuck-at
fault test on a node are inconsistent, the fault is untestable
and the node is redundant. Our method for substitute node
identification computes the MAs for the stuck-at 0 and stuck-
at 1 fault tests on a target node nt . Once we find that the MAs
are inconsistent, we can replace nt with a constant value 0 or
1 depending on the fault value. Thus, we can simultaneously
detect if nt is redundant without extra effort. Similarly, we use
the same method to detect and remove redundant wires in the
wire replacement technique.

C. MA Reuse

MA reuse is a method to reuse the computed MAs during
circuit optimization. According to the concept of fault collaps-
ing [2], which states that two equivalent stuck-at faults have
the same test set, some stuck-at fault tests on different nodes
can have the same MA set. Thus, we can reuse these MAs
when optimizing a circuit.

Let us consider computing the MAs for the stuck-at fault
tests on a node n with MA reuse. Suppose ni is a fanout node
of n and MAs(ni = sa0) has been computed. If there exists no
inv between n and ni, we can directly set MAs(w(n → ni) =
sa0) to MAs(ni = sa0) rather than re-compute the same MA
set. Additionally, if n only leads ni, we can set MAs(n = sa0)
to MAs(ni = sa0). However, if there exists an inv between n

and ni, we can set MAs(w(n → ni) = sa1) to MAs(ni = sa0),
and set MAs(n = sa1) to MAs(ni = sa0) when n only leads
ni. For each node, only the MAs of its stuck-at 0 fault test
can be reused.

D. Overall Algorithm

In circuit optimization, although the optimization orders of
selecting a target node, a substitute node, and a substitute wire
can affect the optimization results, it is difficult and might be
time-consuming to evaluate which replacement is best. Thus,
we use a heuristic optimization order in this paper. Each node
in a circuit is selected as a target node nt in the depth-first
search (DFS) order from POs to PIs, and it is replaced with
the substitute node that is closest to PIs.

However, if nt is determined having no substitute node, we
then perform wire replacement on the wires led by it. Each
wire led by nt is sequentially selected as a target wire and we

Fig. 3. Overall algorithm for circuit size reduction.

replace it with its substitute wire that is closest to PIs once
we find it. Since our objective is to remove nt , if one target
wire cannot be replaced, nt is non-removable, and thus, we
stop performing wire replacement on the remaining wires.

Fig. 3 shows the overall algorithm for circuit size reduction.
Given a circuit C, the algorithm iteratively selects a target node
nt in the DFS order from POs to PIs. At each iteration, from
steps 1–4, the algorithm finds the substitute nodes of nt by
computing MAs(nt = sa0) and MAs(nt = sa1), and replaces nt

with the substitute node that is closest to PIs. If nt is replaced,
the algorithm continues to consider the next target node.

However, if nt has no substitute node, the algorithm starts
performing wire replacement on the wires led by nt in step 5.
Similarly, for each target wire w(nt → ni), the algorithm finds
its substitute wires by computing MAs(w(nt → ni) = sa0)
and MAs(w(nt → ni) = sa1), and replaces it with the
substitute wire that is closest to PIs. If w(nt → ni) is replaced,
the algorithm continues to consider the next target wire.
Otherwise, the algorithm stops performing wire replacement
and returns to consider the next target node.

V. Experimental Results

We implemented our algorithms in C language within an
ABC [3] environment. The experiments were conducted on
a 3.0 GHz Linux platform (CentOS 4.6). The benchmarks
are from the IWLS 2005 suite [14]. Each benchmark is
initially transformed to an AIG format, and we only consider
its combinational portion. Additionally, the recursive learning
technique [8] is applied with the recursion depth 1 in our
algorithms. The experiments consist of two parts. The first
one is to show the efficiency and effectiveness of our method
for finding substitute nodes. The second one is to show the
capability of our method for circuit size reduction.
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TABLE I

Experimental Results of Substitute Node Identification

Benchmark N Nrep % Nsub Ratio Time Nequ Nk>5
sub

i2c 1306 80 6.1 174 2.2 0.2 19 11

pci spoci. 1451 170 11.7 890 5.2 0.6 46 93

systemcdes 3190 147 4.6 301 2.1 1.5 60 29

spi 4053 65 1.6 91 1.4 3.4 14 2

des area 4857 80 1.6 152 1.9 5.6 5 16

tv80 9609 496 5.2 3864 7.8 17.2 146 2684

systemcaes 13 054 202 1.5 380 1.9 17.7 48 15

ac97 ctrl 14 496 98 0.7 242 2.5 3.2 33 1

mem ctrl 15 641 1537 9.8 3588 2.3 98.8 1150 397

usb funct 15 894 370 2.3 1271 3.4 6.3 108 77

aes core 21 513 452 2.1 1742 3.9 15.2 29 910

pci bridge32 24 369 309 1.3 621 2.0 21.7 53 43

wb conmax 48 429 5608 11.6 41 996 7.5 28.2 188 11 385

des perf 79 288 2505 3.2 6195 2.5 51.4 56 694
Average 4.5 3.3
Total 12 119 61 507 271.0 1955 16 357

A. Substitute Node Identification

Due to page limitations, we do not show the experimental
results reported in the work in [13] and do not compare our
method with it. That work has shown its efficiency at finding
local ODC-based node mergers. Instead, we conducted the
experiments to show that our method can complement it by
finding additional node mergers.

In the experiments, each node in a benchmark is considered
a target node and we find its substitute nodes without replacing
it. Each identified node merger is further checked whether it
could not be detected by the local ODC-based method [13] due
to the bounded depth limit. This can be achieved by checking
if a node merger we identify is not a candidate merger in
the local ODC-based method. Thus, we re-implemented the
local ODC-based algorithm with the bounded depth k = 5
to collect candidate mergers. For each benchmark, 25 random
patterns are parallelly simulated for computing ODCs in the
re-implemented algorithm.

Table I summarizes the experimental results. Column 1
lists the benchmarks. Column 2 lists the number of nodes in
each benchmark represented by AIG N. Column 3 lists the
number of target nodes that have substitute nodes, and thus,
are replaceable Nrep. Column 4 lists the percentage of Nrep

with respect to N. Column 5 lists the number of all substitute
nodes Nsub. Column 6 lists the ratio of Nsub with respect
to Nrep. It is also the average number of substitute nodes a
replaceable node has. Column 7 lists the CPU time measured
in seconds. Column 8 lists the number of target nodes having
functionally equivalent substitute nodes. Column 9 lists the
number of all substitute nodes that can be identified by our
method but cannot by the local ODC-based method with k = 5.

The benchmark i2c, e.g., has 1306 nodes. Our method found
that 80 nodes, or 6.1% of nodes, have substitute nodes and
are replaceable. There are 174 substitute nodes in total and
a replaceable node has an average of 2.2 substitute nodes.
The CPU time is 0.2 s. Furthermore, there are 19 nodes
having functionally equivalent substitute nodes. There are 11
substitute nodes that the local ODC-based method cannot
detect, i.e., our method can find additional 11 substitute nodes
when it is used together with the local ODC-based method
with k = 5.

According to Table I, our method can identify substitute
nodes for an average of 4.5% of nodes in a benchmark, with
3.3 substitute nodes for each on average. The overall CPU time

TABLE II

Experimental Results of Our Approach and [11] for Circuit

Size Reduction

Benchmark # Nodes Ours w/o RR Ours w/o WR Ours [11]
% Time % Time % Time % Time

pci spoci. 878 10.9 0.3 10.9 0.2 11.8 0.3 9.2 6

i2c 941 2.0 0.2 1.9 0.1 2.2 0.1 3.2 3

dalu 1057 7.0 0.5 6.8 0.3 9.1 0.5 12.0 10

C5315 1310 0.5 0.2 0.5 0.1 0.5 0.1 0.7 2

s9234 1353 1.9 0.2 1.6 0.2 1.8 0.2 1.2 8

C7552 1410 3.3 0.4 2.8 0.3 3.3 0.5 3.4 8

i10 1852 5.3 0.9 5.2 0.6 5.8 0.9 1.3 12

s13207 2108 1.6 0.6 2.1 0.5 2.2 0.6 1.8 17

alu4 2471 13.8 7.4 21.4 5.3 22.6 6.8 22.9 64

systemcdes 2641 2.0 1.3 1.6 0.9 2.0 1.3 4.7 9

spi 3429 0.6 3.8 0.5 2.7 0.6 3.8 1.3 84

tv80 7233 3.9 15.2 3.8 10.6 4.6 14.8 7.1 1445

s38417 8185 0.6 1.7 0.6 1.2 0.7 1.8 1.0 275

mem ctrl 8815 16.2 9.2 17.7 6.8 17.4 8.8 18.0 738

s38584 9990 1.1 14.4 1.4 11.4 1.7 14.3 0.8 223

ac97 ctrl 10 395 0.2 2.4 0.2 2.0 0.2 2.4 2.0 188

systemcaes 10 585 0.7 17.4 0.6 13.1 0.7 17.1 3.8 360

usb funct 13 320 2.3 7.2 2.2 5.9 2.6 7.1 1.4 681

pci bridge32 17 814 0.5 14.7 0.5 12.0 0.6 14.5 0.1 1134

aes core 20 509 1.2 22.6 0.7 13.2 1.2 22.3 8.6 1620

b17 34 523 1.9 110.3 1.6 72.4 2.5 108.6 1.6 5000

wb conmax 41 070 4.6 48.1 4.4 31.9 4.7 46.8 6.2 5000

des perf 71 327 2.1 202.1 1.7 62.6 2.1 199.0 3.7 5000
Average 3.7 3.9 4.4 5.0
Total 481.1 254.3 472.6 21 887
Ratio 1 46.3

for all benchmarks is only 271.0 s. Additionally, according to
Columns 3 and 8, we can conclude that most node mergers
our method finds are ODC-based node mergers. However, they
also show that our method is not good at finding functionally
equivalent node mergers. This is because proving two nodes to
be functionally equivalent by checking if one of them logically
implies the other one is difficult by using logic implications,
especially when they have disjoint fanout cones. Fortunately,
functionally equivalent node mergers can be easily detected
by the SAT sweeping method [7].

Additionally, the last column shows that our method can find
additional substitute nodes that the local ODC-based method
with k = 5 cannot detect for all benchmarks. It can be expected
that when our method is applied together with the local ODC-
based method, we can obtain more substitute node choices
and potentially more replaceable nodes with little CPU time
overhead. Thus, our method can be considered another fast
method that can complement the local ODC-based method.

B. Circuit Size Reduction

Next, we compare our method with the global ODC-based
method [11] for circuit size reduction, which is superior to
the local ODC-based method. To have a fair comparison, we
initialize each benchmark by using the resyn2 script in the
ABC package as performed by [11], which performs local
circuit rewriting optimization [9]. After the initialization, we
optimize the benchmarks by using our overall method as
shown in Fig. 3. For comparison, we also separately optimize
the benchmarks by using our method without redundancy
removal and the one without wire replacement. After the
optimization, we apply an equivalence checking tool, cec
[10], in the ABC package to verify the correctness of our
optimization. Note that although we have each benchmark
initialized as [11] did by applying the resyn2 script, the initial
number of nodes in each benchmark is still a little different
from that reported in [11].
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Table II summarizes the experimental results. Columns 1
and 2 list the benchmarks and the number of nodes in each
benchmark represented by AIG, respectively. Columns 3, 5,
and 7 list the percentage of circuit size reduction in terms
of node count achieved by our method without redundancy
removal, our method without wire replacement, and our overall
method, respectively. Columns 4, 6, and 8 list the CPU time
measured in seconds. Columns 9 and 10 list the corresponding
results reported in [11]. The maximal CPU time in Column
10 is 5000 s, which is the CPU time limit set by the work.

Table II shows that although the efficiency benefits of
our method come at the expense of the optimization quality,
our method can work together with the redundancy removal
and the wire replacement techniques to have a competitive
capability with a speedup of 46.3 times, compared to the
global ODC-based method.

VI. Conclusion

In this paper, we proposed an ATPG-based method for
node merging by using logic implications. The method only
requires two MA computations to find the substitute nodes of
a target node. The process that previously required many SAT
solving calls is thus reduced to be achievable in practically
linear time. The experimental results showed that the proposed
node-merging method can complement the local ODC-based
method with the bounded depth k = 5 by finding additional
node mergers. Moreover, we extend the node-merging method
with three techniques, wire replacement, redundancy removal,
and MA reuse, for circuit optimization. The experimental
results showed that the proposed optimization algorithm has
a competitive capability and expends much less CPU time
compared to the state-of-the-art method.
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On Undetectable Faults and Fault Diagnosis

Irith Pomeranz and Sudhakar M. Reddy

Abstract—The presence of an undetectable fault ui may modify the
response of a detectable fault dj to a test set used for fault diagnosis.
This may impact the accuracy of fault diagnosis based on the responses
of single faults. Many state-of-the-art diagnosis processes are based on
the responses of single stuck-at faults even though their goal is to
diagnose defects (including multiple defects) that are different from stuck-
at faults. Therefore, we study the effects of undetectable single stuck-
at faults on the accuracy of fault diagnosis based on the responses of
single stuck-at faults. For this purpose, we consider the cases where
the response of a double stuck-at fault ui&dj , which consists of an
undetectable fault ui and a detectable fault dj , is different from the
response of the single fault dj . We show that there are significant, yet
manageable, numbers of such faults in benchmark circuits under test
sets used for fault diagnosis. In all these cases, a fault diagnosis process
based on single stuck-at faults may not identify the locations of dj and
ui as candidate defect sites if a defect affects the sites of dj and ui. We
conclude that it is important to consider ui&dj during fault diagnosis
in order not to preclude the sites of dj and ui as candidate defect sites.

Index Terms—Diagnostic test generation, fault diagnosis, full-scan
circuits, stuck-at faults.

I. Introduction

Fault diagnosis is a process that identifies the likely loca-
tions of defects present in a chip after the chip produces a
faulty output response to a test set. Conceptually, the fault
diagnosis process compares the observed response of the chip
to the responses expected in the presence of modeled faults.
The defect is assumed to be present at one of the sites of the
modeled faults that best match the observed response. These
sites are referred to as candidate defect sites, and the faults are
referred to as candidate faults. For the results to be considered
accurate, the site of a candidate fault needs to point correctly
to the site of the defect.

Several fault diagnosis procedures [1]–[9] use single stuck-
at faults as a basis for diagnosis, noting that responses of com-
mon defects to test sets used for diagnosis can be represented
as deviations from the responses of single stuck-at faults. For
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