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Abstract—Path balancing technology mapping is a method of mapping
a technology-independent logical description of a circuit, such as a
Boolean network, into a technology-dependent, gate-level netlist. For a
gate-level netlist generated by the path balancing mapper, the difference
between lengths of the longest and the shortest paths in the circuit is
minimized. To achieve full path balancing, it may be necessary to add
buffers on signal paths, and in such a case, the cost of buffers must be
properly accounted for. This paper presents a dynamic programming-
based technology mapping algorithm that generates a minimum-area
mapping solution which is guaranteed to be fully path balanced. The
fully path balanced mapping solution is essential to conventional su-
perconductive single flux quantum circuits, which will fail otherwise.
The balanced mapping solution is also useful in CMOS circuits to
avoid (or minimize) unwanted hazard activity and the resulting wasteful
dynamic power dissipation as well as to achieve the maximum throughput
in a wave-pipelined circuit. Experimental results show that our path
balancing technology mapping algorithm decreases total area, static
power consumption, and path balancing overhead of single flux quantum
circuits by large factors. For example, it reduces the circuit area by
up to 111% and by an average of 26.3% compared to state-of-the-art
technology mappers.

I. INTRODUCTION

With increasing challenges to the downscaling of Complementary
Metal Oxide Semiconductor (CMOS) devices and the impending
end of the Moore’s law [1], new device, circuit, and architectural
solutions are required to keep up with the ever increasing demand
for high-speed and low-power circuits and systems. Carbon nanotubes
[2], graphene [3], and spin wave [4] devices are some device level
solutions which have been recently explored to replace the CMOS
technology. Superconductive Single Flux Quantum (SFQ), with a
switching delay of 1ps and switching energy of 10−19J is another
beyond-CMOS technology candidate for achieving high-performance
and energy-efficient circuits and systems [5]. The first family of SFQ
logic: Rapid Single Flux Quantum (RSFQ), was developed in the
1980s and is as fast as 770GHz at T=4K [6], [7]. SFQ circuits are
made of Josephson Junctions (JJs), which are superconductive devices
operating based on the Josephson effect [8].

SFQ devices are pulse-based logic which use the presence or
absence of a single quantum of magnetic flux (Φ0 = h/2e =
2.07mV × ps) to represent the binary “1” or “0” information,
respectively. Most of SFQ gates receive a clock signal; indeed an
SFQ logic gate can be modeled as a normal (combinational) logic
gate with a clocked D-Flip-Flop (DFF) attached to its output. If a
gate has more than one fanout, special clockless gates called splitters
are inserted at the output of this gate to create multiple fanouts [9].
Finally, SFQ circuits need to be path balanced [10], [11], which
means the length of any path from a Primary Input (PI) to any Primary
Output (PO) in terms of the (clocked) gate count must be the same.
This requirement is essential to the correct operation of the SFQ
circuit. Fig. 1 shows the circuit diagram of an SFQ NOT gate and
corresponding waveforms showing its functionality. As seen, after the
clock pulse comes, when there is no input pulse, a pulse is generated
at the output of the gate representing a “1”. On the other hand, when
there is an input pulse, no pulses are generated at the output, meaning
a “0”. For more details about SFQ circuits, see [6]–[12].

We have observed that if the path lengths of a given SFQ circuit
are not controlled during the technology mapping, we may end up
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Fig. 1: Schematic of an SFQ NOT gate and its waveforms. In case of not
having any input pulses, an output pulse is generated after arrival of the
clock pulse, representing a “1”. However, when there is an input pulse,
no pulses are generated at the output, meaning a “0”.

having a circuit that needs the insertion of many path balancing
DFFs to ensure the said path balancing requirement. Fig. 2 compares
original logic gate and required path balancing DFF counts for a
few benchmark circuits. These circuits are mapped using a state-
of-the-art open-source academic logic synthesis tool called ABC
[13], and are path balanced and retimed [14] similar to [9]. For
IntDiv8 circuit (an 8-bit integer divider), the DFF count is as high
as 4.5× that of the original logic gate count in the circuit. On the
other hand, if the balancing requirement of the circuit is considered
during the technology mapping, it is possible to come up with much
better mapping solutions which need fewer path balancing DFFs.
For example, for a 2-bit adder, as shown in Fig. 3, two mapping
solutions with the same gate count and area exist. However, one of
them requires 10 path balancing DFFs whereas the other one needs
only three path balancing DFFs.

In this paper, we present a technology mapping algorithm which
takes the balancing overhead into account and tries to find the most
cost-efficient mapping solutions for a given circuit. Thanks to this
algorithm, the total gate count (accounting for both the original
logic gates and the path balancing DFFs) is reduced, which results
in decreasing the total area and static power consumption of the
circuit (static power is the main source of power consumption in SFQ
circuits [15]). The proposed algorithm provides an optimal solution
for balanced tree mapping, and a modified version of it acts as a very
effective heuristic for path balancing general Directed Acyclic Graph
(DAG) mapping. The optimality of the algorithm for tree mapping
is proven by developing models relating the number of required path
balancing DFFs at each level of a given subject tree to the leaf node
count of this tree and to its height.

Our path balancing technology mapping algorithm can be used
in wave-pipelined circuits to increase the rate at which data can
propagate through the circuit (throughput) by decreasing the dif-
ferences between lengths of the shortest and longest paths [17],
[18]. It also can be used in any technologies or design methods
that require full path balancing. For example, in stateful logic [19],
each gate combines logic and memory and if all logic paths have
equal length, the throughput of the circuit can be increased by
orders of magnitudes at the expense of an area overhead of required
path balancing buffers [19]. Our path balancing technology mapping



2019 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD). DOI: 10.1109/ICCAD45719.2019.8942053 2

 

0

1000

2000

3000

4000

KSA32 c3540 IntDiv8 c7552 c5315

#Gates #DFFs

Fig. 2: Path balancing DFF count versus original gate count for a few
benchmark circuits. KSA32 is a 32-bit Kogge-Stone adder; IntDiv8 is an
8-bit integer divider and c5315, c7552, and c3540 are chosen from ISCAS
benchmark suite [16]. These circuits are mapped using map command of
ABC [13], and path balanced and retimed using full path balancing [9],
[10] and retiming [14] algorithms.
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(b)

Fig. 3: Two mapping solutions for a 2-bit Kogge-Stone adder using
mcnc.genlib library of gates (red squares are path balancing DFFs):
(a) Consuming 11 gates with area of 37.0 units and requiring 10 path
balancing DFFs , (b) Consuming 11 gates with the same area but requiring
only three path balancing DFFs. It is obvious that the total area of gates
and path balancing DFFs in the second circuit is much less than the same
in the first one.

algorithm helps reducing this area overhead. In the rest of the paper,
we use path balancing DFFs or buffers to refer to the elements that
should be inserted onto short paths to satisfy the full path balancing
property.

The main contributions of this paper are as follows:
• Capturing the cost of required path balancing buffers during

technology mapping and developing a dynamic programming-
based, balance-aware technology mapping algorithm.

• Developing new formulas relating the number of required path
balancing buffers at each level of a tree to the leaf node count
of this tree and its height.

• Proving the optimality of the presented technology mapping
algorithm for tree-like structures.

• Presenting an effective DAG mapping heuristic for area mini-
mization in path balancing technology mapping.

II. RELATED WORK

Keutzer [20] developed DAGON: a technology binding tool with
local optimizations. DAGON partitions general DAGs into forests of
trees and finds optimal solutions for these trees by pattern matching.
Cong and Ding [21] developed FlowMap: the first load-independent
delay optimal DAG mapping algorithm for FPGAs. Chaudhury and
Pedram [22] presented an optimal area-delay mapper by constructing

the pareto optimal frontier using dynamic programming. Mishchenko
et al. [23] developed a priority-cut-based technology mapping tool in
which the priority of selecting matches for individual nodes can be
chosen as delay, area, or any other desired metric. In [24], majority-
based logic synthesis is introduced and is further developed in [25].
Soeken et al. [26] proposed an effective algorithm for exact logic
synthesis of Boolean networks using majority-inverter graphs, which
improved both area and delay after lookup table (LUT)-based technol-
ogy mapping. In [27], a gate sizing and buffer insertion algorithm is
proposed to achieve path balancing in CMOS circuits; this algorithm
reduces load capacitance and glitches at the same time. Pasandi et al.
[12] developed a depth minimization with path balancing algorithm
for technology mapping, which provides optimizations for the product
of the worst stage delay and length of the longest path, as well. In
[10], a path balancing technology mapping algorithm is presented
for single flux quantum logic circuits with the goal of minimizing
total required number of path balancing DFFs; this algorithm is
proven to provide optimal tree mapping solutions in case of having
up to 2-input gates in the given library. In [28], an SOP-balancing
algorithm by generalizing an AND-balancing approach is presented;
while the AND-balancing algorithm is limited to multi-input AND
gates, the SOP-balancing algorithm supports more complex functions,
therefore, it has opportunities for further delay minimization.

Regarding area minimization in technology mapping, there are
several published papers; Farrahi and Sarrafzadeh [29] proved that
even restricted cases of the lookup-table count minimization as a
measure of area in FPGAs are NP-complete for DAGs. However,
these authors presented a polynomial time algorithm for minimum-
area tree mapping and presented a polynomial time heuristic for area
minimization in general Boolean networks. Chaudhary and Pedram
[30] presented a near optimal algorithm for technology mapping
that minimizes area under delay constraints; this is achieved by
generating area-delay curves in a topological ordering traversal of
the given subject graph and selecting solutions from these curves in
a reverse topological ordering traversal. Chen and Cong [31] studied
the technology mapping problem for FPGAs targeting area minimiza-
tion; they considered the potential node duplication during the cut-
enumeration process such that the mapping cost is encoded into cuts,
and after the timing constraints are met, the constraints on non-critical
paths are relaxed in order to minimize the area. Manohararajah et
al. [32] presented IMap, an iterative technology mapping tool that
supports depth-oriented, area-oriented, and duplication free mapping
modes; in the depth-oriented mapping mode, area is a secondary
objective, while in the area-oriented mapping mode, area is the first
objective.

In this paper, we present a technology mapping framework target-
ing area minimization in logic circuits which require full path bal-
ancing. For this purpose, our new technology mapping cost function
captures the effect of the path balancing buffers and our algorithm
minimize total area including the area of gates and these buffers. We
will prove that our algorithm provides optimal tree mapping solutions
and a modified version of it, by capturing node duplication encoded
in the information of logic levels, acts as a very effective heuristic
for DAG mapping.

There are two main differences between this paper and the path
balancing technology mapping tool presented in [10]: (i) In [10], total
number of path balancing DFFs is minimized and total gate count is
not considered in optimizations. This may increase the sum of gate
and DFF counts, which potentially can increase the total area. To
solve this problem, in this paper, we define and minimize a new cost
function which captures effect of gates and path balancing buffers
(DFFs) at the same time, resulting in ensuring total area reduction.
(ii) In [10], the optimality of technology mapping algorithm is proven
for trees, assuming that the gates in the library have up to two inputs.
However, in this paper, we provide proof of optimality for a general
case of having any multi-input gates in the library. In addition, in
this paper we propose a novel heuristic for mapping general DAGs
by encoding duplication of nodes into their logic levels, which helps
generating more area efficient solutions for DAGs. Moreover, in favor
of CMOS circuits, we present a modified version of path balancing
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technology mapping algorithm which preserves the best obtained
critical path delay, while it still reduces the path balancing overhead.

III. PATH BALANCING TECHNOLOGY MAPPING

Given a Boolean network, technology decomposition [33] gener-
ates a DAG consisting of 2-input (N)AND and inverters called the
subject graph. This DAG can be decomposed into trees and in a
special case it can be a tree itself. Technology mapping binds gates
from a given library to a node or set of nodes of the subject graph,
generating a mapping DAG (a mapping tree in the special case).

A. Terminology and Notation
Buffer Node: A single-fanin, single-fanout node which is added

by the path balancing technology mapper to some selected edges of
the mapped circuit to ensure that the circuit is fully path balanced.
A buffer node is replaced by a DFF in SFQ circuits.

And-Inverter Graph (AIG): A subject graph in which nodes are
2-input AND gates. Inverters are modeled as a field in the data
structure of the node [13]. Therefore, if the AIG is a tree, it will
be a binary tree rooted at node t with every node having exactly two
inputs.

Reverse level Ri of node i in a tree T : Length of the longest
path (in terms of the node count including the node itself) from node
i to the root node t in T . The root is at reverse level r=Rt=1.

Leaf node of a tree T : An input to the tree (we assume a tree
input is modeled as a fanin-free, dummy node).

Logic level Li of node i in a tree T : Length of the longest path
(in terms of the node count including the node itself) from any tree
inputs to this node. The tree inputs are at logic level 0.

Height H of a tree T : Number of nodes on the longest path from
any tree inputs to the root (this is the same as the largest reverse
level of any node).
n: Denotes the number of leaf nodes in tree T .
N : Denotes the number of internal nodes of tree T including the

root node t.
y(z, r, i): Denotes the number of nodes with z inputs at reverse

level r of tree T rooted at node i.
Y (z, i): Denotes the number of nodes with z inputs in tree T

rooted at node i: Y (z, i)=
∑H

r=1 y(z, r, i).

B. Mapping Algorithm
The balanced tree mapping problem is solved using dynamic

programming (DP). The input of the technology mapper is an AIG
with tree structure, and the pattern graphs are gates in the library
[34], or supergates1 [35] generated using these gates. Matches at
node i are obtained by enumerating all k-feasible cuts [21], [23] of
the node and examining all supergates that can implement function of
this node based on inputs of each computed cut. In the path balancing
technology mapping, cost of any added buffer nodes (DFFs in SFQ
circuits) are considered in the total area cost of the mapping solution.
The cost of mapping a sub-tree rooted at node i in a given subject
tree can thus be written as follows:

Cost∗(i) = min {Cost(m, i)} ∀m ∈ matches(i)

Cost(m, i) = Cost(m) + SLD(SuppC(m, i))× CostBFR

+
∑

∀k∈SuppC(m,i)

Cost∗(k) (1)

where Cost∗(i) is the dynamic programming (i.e., minimum) cost
of the mapping of the AIG sub-tree rooted at node i, Cost(m, i)
is the cost of a particular match m at node i, and matches(i)
and SuppC(m, i) denote the possible matches for node i and the
support (boundary nodes) of the cut (among k-feasible cuts of node
i) that corresponds to the match m. In the above equation, SLD(S)
denotes a function that returns the sum of the absolute value of

1Supergates are small trees, which are generated by exhaustively concate-
nating original gates in the given library.
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Fig. 4: An AIG tree with five nodes. 3-feasible cuts (C1, C2, and C3) of
node i in this subject tree are shown. Leaf nodes are shown with squares.
Nodes are labeled in a Breadth First Search (BFS) order (root, left, right).

level differences of pairs of nodes in a node set S. For example,
SLD({i, j, k, l}) where Li = 1, Lj = Lk = 2, Ll = 4 is equal to
(4−1)+2× (4−2) = 7. Cost of a path balancing buffer is denoted
by CostBFR. The product of SLD(SuppC(m, i)) and CostBFR

thus gives the total cost of the require path balancing buffers.
Example 1: Consider the AIG tree shown in Fig. 4. The value of

the optimal solution for mapping the tree rooted at node i when k=3
(in the cut computation procedure) is calculated as follows:

Cost∗(i) = min{
Cost(mC1) + SLD({i+ 1, i+ 2})× CostBFR + Cost∗(i+ 1)

+ Cost∗(i+ 2),
Cost(mC2) + SLD({i+ 1, i+ 3, i+ 4})× CostBFR + Cost∗(i+ 1)

+ Cost∗(i+ 3) + Cost∗(i+ 4),
Cost(mC3) + SLD({a, b, i+ 2})× CostBFR + Cost∗(i+ 2)

+ Cost∗(a) + Cost∗(b)

} (2)

where mC1, mC2, and mC3 are costs of supergates (there can be
several for each) which implement function of node i based on inputs
of cuts C1, C2, and C3, respectively. Cost∗() is equal to 0 for leaf
nodes. Squares in Fig. 4 denote leaf nodes. Please note that in the
rest of this paper (Figs. 5, 6, 7), the leaf nodes are not shown.

The minimum-cost fully-path-balanced mapping solution for a
given tree is generated using the following algorithm which is called
BalancedMap:

First, k-feasible cuts and their truth-tables are computed for each
node [21], [23]. Next, in a topological ordering traversal starting from
the PIs of the tree, nodes are visited and the best solution for each
node which gives the least value for the said cost function is computed
using the dynamic programming algorithm with Eq. 1 as its value of
the optimal solution. When the root is visited, the optimal mapping
solution for the whole tree is computed which is generated by a
reverse topological ordering traversal from root to leaf nodes of the
tree. Finally, splitters and buffers are inserted.

Algorithm 1 shows the pseudo code of our path balancing tech-
nology mapping algorithm. In lines 1, the mapping manager is con-
structed and a few pre-processing steps such as generating supergates,
computing k-feasible cuts and their truth tables are done. These steps
are similar to ABC [13]. In lines 2-3, the most cost efficient solutions
minimizing the cost function in Eq. 1 are calculated. In line 4, the
optimally mapped circuit is obtained by traversing the tree back from
its root to its PIs. In line 5, the mapped circuit is given to a function
to insert path balancing buffers (DFFs) wherever it is needed2 and

2This function traverses over all gates; for a gate, it finds maximum logic
level among its immediate fanin gates (Lmax), and inserts Lmax−Li buffers
to the immediate fanin gate Gi, where Li is the logic level of this fanin gate.
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Algorithm 1: BalancedMap
Input: Tree T = (V,E) rooted at node i comprising node sets

V and edge set E, and gate library L
Output: The optimally mapped, path balanced circuit with

inserted splitters, NMap

1 Start the mapping manager and perform pre-processing steps.
2 for each node v in V do
3 Find the most cost efficient mapping solution based on Eq. 1.

// generating the mapping tree:
4 T ∗i = Network From Map (T )
// Inserting path balancing DFFs and

performing retiming:
5 N2 = add Buffers Retime(T ∗i )
// inserting splitters:

6 NMap = InsertSplitters(N2)
7 return NMap

to perform standard retiming [14]3. Finally, if this algorithm is used
for mapping SFQ circuits, in line 6, splitters are inserted to outputs
of gates with more than one fanouts; this step can be ignored for
technologies that do not require splitters for generating fanouts more
than one.

The complexity of computing k-feasible cuts is O(KMN),
where K is a constant, N is the node count, and M is the edge
count [21]. The complexity of selecting the best solution for a node
after having its k-feasible cuts is O(K′Np), in which, K′ is the
maximum number of k-feasible cuts for a node in the given subject
graph, and p is the number of gates in the library. The complexity of
generating the mapped circuit is O(N), because each node will be
visited once at maximum. The complexity of adding path balancing
buffers is O(M + N), because each node is visited once and for
a visited node each input edge is visited one time. The complexity
of retiming is O(MN × log(N)) [14]. Since in the splitter insertion
process each node is visited once, the complexity of inserting splitters
is O(p′×N), where p′ is a constant value representing the required
time for inserting splitters at the output of a gate. Therefore, the
complexity of the whole algorithm is determined by the retiming
step to be O(MN × log(N)).

C. Proof of Optimality
In this section, we will prove that the principle of optimality of

dynamic programming4 is satisfied in our problem formulation and
therefore the aforesaid algorithm produces the optimal tree mapping
solution in polynomial time. For this purpose, we need to first develop
a few models relating height, leaf node count, and path balancing
buffer count in a tree.

Total leaf node count of a full binary tree with height H is 2H .
For a full b-ary tree5, this number is equal to bH . A tree which is
not full has fewer leaf nodes. If a node with in-degree of b′ < b
is present at reverse level r of a tree, it will contribute in reduction
of leaf node counts by the following amount: bH−r+1 − b′ × bH−r .
As a sanity check, a node with maximum in-degree (b′=b) does not
contribute in reduction of leaf node counts. Based on this fact and
using some basic properties of trees, a closed form formula for the
leaf node count of a tree T rooted at t based on its height and number
of nodes (with more than one input) and buffers at different levels
of the tree can be obtained, written as follows:

bH−(b−1)×
{
y(1, 2, t)× bH−2 + y(1, 3, t)× bH−3 + ...+ y(1, H, t)

}
−(b−2)×

{
y(2, 2, t)× bH−2 + y(2, 3, t)× bH−3 + ...+ y(2, H, t)

}
−...

= n (3)

3To minimize the register count; path balancing buffers are treated as
registers in the retiming algorithm.

4Optimal solution for a subset of the problem should be built from the
optimal solutions for its sub-problems.

5The tree with maximum number of nodes for the given height in which
all nodes have in-degree of b.

F

Buffer 
node

Regular 
node

r = H = 3

r = 2

r = 1

 

Fig. 5: An example to verify the correctness of Eq. 4 for giving total
leaf node count of a general tree. The leaf node count of this tree is :
2× 32 − 2× {1× 3 + 1}+ 1× {0 + 2} = 18− 8− 2 = 8 X.

The above equation starts with the leaf node count of a full b-ary
tree (bH ) and first accounts for contributions of nodes with in-degree
of b-1 in reduction of the total leaf node count of the tree, then it
accounts for nodes with in-degree of b-2, ..., all the way to nodes
with in-degree of one. This equation can be rewritten as follows:

b−1∑
z=1

{
(b− z)×

H∑
r=2

{
y(z, r, t)× bH−r

}}
= bH − n (4)

Note that in the above equation, it is assumed that the root node t
has the in-degree of b. If the root node has fewer number of inputs
(e.g. b′ < b), the right hand side of Eq. 4 should be replaced with
b′ × bH−1 − n.

Example 2: Suppose that there are up to 3-input gates in the library;
the left hand side of Eq. 4 will be

∑2
z=1{(3−z)×

∑H
r=2[y(z, r, t)×

3H−r]}. Fig. 5 shows a tree with height H=3. The leaf node count
of this tree is calculated as follows:

2× {1× 3 + 1}+ 1× {0 + 2} = 2× 32 − n
⇒ n = 18− 8− 2 = 8 X (5)

Fig. 5 verifies the correctness of these calculations.
Lemma 3.1: The total leaf node count of a tree with N internal

nodes is calculated as follows:

n =

{
N∑
i=1

(bi − 1)

}
+ 1 (6)

where, bi is the in-degree of the internal node i.
Proof by induction: Base case: a tree with only one internal node
(node 1) has b1 leaf nodes. Induction step: assume that a tree with j
internal nodes has {

∑j
i=1(bi − 1)}+ 1 leaf nodes. If a leaf node is

replaced with a new internal node (node j+1), one leaf node will be
lost, but bj+1 new leaf nodes will be generated by the added node. In
total, bj+1-1 leaf nodes will be added. So, the total leaf node count
will be as in Eq. 6.�

A special case of the above lemma (as mentioned in lemma 1 in
[10]) for b=2 is: n=N+1. Instead of going through all internal nodes
and summing up their in-degree minus one values (as in Eq. 6), we
can traverse a tree level by level and account for contributions of
gates with an specific in-degree in total leaf node count and repeat
it for all in-degree values larger than or equal to two (we start with
in-degree of two, because for in-degree of one, b-1 = 0). Therefore,
using the y(z, r, t) terminology, for a tree with height H , Eq. 6 can
be equivalently rewritten as follows:

n =

b∑
z=2

{
(z − 1)×

H∑
r=1

y(z, r, t)

}
+ 1 (7)

Furthermore, the cost function introduced in Eq. 1 can be simplified
as follows. Let T ∗i denote the mapping solution corresponding to
Cost∗(i) in Eq. 1. By assuming that the cost of a library gate is
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proportional to the number of its inputs, the normalized cost of T ∗i
(denoted by nCost∗(i)) may be calculated as follows:

nCost∗(i) =

b∑
z=1

z × Y (z, i) (8)

where b is the maximum in-degree of any library gates. Please note
that since the iterator z starts from 1, cost of the path balancing buffers
(as single input nodes) are taken into account. This cost function is
equal to the total edge count in T ∗i . Clearly if i is selected to be
the root node t, then nCost∗(t) denotes the total cost of the best
mapping solution for the given AIG tree. As mentioned before, by
assuming that the area of a library gate with 2z inputs is 2× the
area of a gate with z inputs, Eq. 8 gives the total area cost of the
best mapping solution for an AIG tree (including any path balancing
buffers).

The above formula can be further rewritten as follows:

nCost∗(i) =

b∑
z=1

{
z ×

H∑
r=1

y(z, r, i)

}
(9)

Using Eqs (7, 8), the above cost function is rewritten as follows:

nCost∗(i) =

H∑
r=1

y(b−1, r, i)+2×
H∑

r=1

y(b−2, r, i)+3×
H∑

r=1

y(b−3, r, i)

+ ...+ (b− 1)

H∑
r=1

y(1, r, i) + Const. =

H∑
r=1

{
b−1∑
z=1

(b− z)× y(z, r, i)

}
+ Const. (10)

where Const. refers to some constant values with no impact on the
minimization procedure, thus, can be ignored. Therefore, the final
form of the cost function for mapping a tree rooted at node t is
expressed by Eq. 11.

nCost∗(t) =

H∑
r=1

{
b−1∑
z=1

(b− z)× y(z, r, t)

}
(11)

On the other hand, Eq. 4 which relates the total leaf node count of
a tree to its height and number of nodes at different reverse levels,
can be rewritten as follows:

H∑
r=2

{{
b−1∑
z=1

(b− z)× y(z, r, t)

}
× bH−r

}
= bH − n (12)

The expression inside braces in Eq. 11 is the portion of the total
cost function which corresponds to the reverse level r, hence, can be
denoted by CostFuncr . Eq. 12 acts as a constraint for minimizing
value of the cost function in Eq. 11. The next two lemmas introduce
trees which give lower/upper bounds for the cost function.

Lemma 3.2: Among all b-ary trees with height H and total leaf
node count of n, the tree which maximizes CostFuncr at each
reverse level 1 ≤ r ≤ H (starting with smaller reverse levels) subject
to satisfying Eq. 12 for the whole tree, gives the lower bound for the
value of the cost function in Eq. 11.
Outline of the Proof: The intuition behind this lemma is that since
the right hand side of Eq. 12 is fixed, in order to minimize the cost
function (which is equal to sum of all CostFuncr at different reverse
levels), CostFuncr that is multiplied by larger power of b in the left
hand side of the Eq. 12 (which corresponds to smaller reverse levels)
should have larger value. Therefore, if we start with smaller reverse
levels and maximizes their CostFuncr , the total cost function will
be minimized. Please note that if maximizing CostFuncr for reverse
level r gives rise to a final tree topology that violates Eq. 12, it is
not accepted and a smaller value should be used for that.

Example 3: Suppose that we want to generate the most cost efficient
tree with n=7, H=4 rooted at t, and having b=3. Having these values,
CostFuncr will be 2× y(1, r, t) + 1× y(2, r, t). For the root, a 2-
input gate should be used. For the next level, there are some options
for choosing gates; three of them are mentioned in the first set of

t

F
Buffer 
node

Regular 
node

r = H = 4

r = 2

r = 1

r = 3

CostFuncr = 2×y(1,r,t) + 
y(2,r,t)

y(1,r,t) y(2,r,t)

0 2 2
1 1 3
1 0 2

2 1 5
2 0 4
1 2 4
0 3 3

} r=2

} r=3

CostFuncr

 

Fig. 6: An example of the most cost efficient tree with n=7, H=4, and
b=3. The right-most column in the table shows portions of the total cost
function for a specific reverse level (r).

numbers in the table shown in Fig. 6. The second option which
gives the highest valid value for CostFunc2 is selected. This is
implemented by using one 2-input gate and one buffer node at reverse
level r=2. Note that at this reverse level, there are more options that
are not valid. For example, someone may use two 3-input gates at
r=2. This will generate six leaf nodes at the reverse level 2. We have
to generate two more reverse levels (to reach H=4) by putting at least
one 2-input gate per level. This will generate at least two more leaf
nodes for the final tree according to lemma 3.1. Since six leaf nodes
are generated up to now, only one more leaf node can be generated
to reach n=7. Thus, using two 3-input gates at reverse level 2 of this
tree, the maximum achievable height for n=7 will be H=3, therefore,
using two 3-input gates at reverse level 2 does not lead to a valid
solution. For reverse levels 3 and 4, similar gate assignment procedure
can be used to generate a valid tree. Due to space limitations, in the
table of Fig. 6, options for reverse level 4 are not shown. Using Eq.
11, the value of the cost function for the tree shown in Fig. 6 is
(1× 1) + (2× 1 + 1× 1) + (2× 2 + 1× 1) + (2× 2 + 1× 1) = 14.

Lemma 3.3: Among all b-ary trees with height H and total leaf
node count of n, the tree which minimizes CostFuncr at each
reverse level 1 ≤ r ≤ H (starting with smaller reverse levels) subject
to satisfying Eq. 12 for the whole tree, gives the upper bound for the
value of the cost function in Eq. 11.
Outline of the Proof: With similar explanations given for the lemma
3.2, the intuition in this lemma is to give smaller values for
CostFuncr at smaller reverse levels because they are multiplied by
larger powers of b in Eq. 12, resulting in maximization of the sum
of all of them, which is equivalent to maximizing the cost function.

Example 4: The least balanced tree with n=7, H=4 rooted at
t, and b=3 (the same values as in Example 3) is shown in Fig.
7. Note that for reverse level r=2, there is another option which
makes CostFunc2 equal to two, but it is not selected as the final
choice. This option corresponds to having one 3-input and two 2-
input gates at this reverse level. This will generate seven leaf nodes
up to now. We cannot generate more leaf nodes and still two more
reverse levels have to be generated, which is not possible. Thus, this
option is not valid. The value of the cost function for this example
is (0) + (2× 2) + (2× 4 + 1× 1) + (2× 5 + 1× 1) = 24, which
is larger than 14 in Example 3.

In the above two lemmas, it is assumed that the buffer nodes are
only used for path balancing. Note that in Eqs. 11, 12, the upper
bound for iterator z can be increased to b without changing values
of the equations (b− b = 0). This allows selection of gates with the
maximum in-degree b in the above lemmas.

Lemma 3.4: If T1 (with height X) and T2 (with height X +p) are
two valid solutions for mapping a tree rooted at node t of a given
subject tree, and Cost1 and Cost2 are their cost functions based on
Eq. 11, Cost2 −Cost1 cannot be less than p, where p is a positive
integer.
Outline of the Proof: It is enough to prove the lemma for the
following T1 and T2 trees with the mentioned cost functions below
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Fig. 7: An example of the least cost efficient tree with n=7, H=4, and
b=3.

(the proof is removed):
T1: The least cost efficient tree with height X .

Cost1 = b× nb + 0 = b× bX − 1

b− 1
(13)

T2: The most cost efficient tree with height X + p.

Cost2 = 2×n2+b×nb+BFRcnt = 2×(X+p−1)+b×(X+p)+

(X + p− 2)× (X + p− 1)/2 (14)

where BFRcnt is the total path balancing buffer count.
Theorem 3.5: The presented minimum-cost fully-path-balanced

tree mapping algorithm satisfies the principle of optimality of DP,
therefore, it gives the optimal solution in polynomial time.
Proof: Let St refers to the optimal solution for mapping a tree rooted
at node t. For simplicity and without loss of generality, suppose that
St is built of two sub-parts i and i′. Let’s call the part of St related
to mapping the sub-tree rooted at i (i′), Si (Si′ ). The above theorem
claims that Si (Si′ ) is the optimal solution for mapping the sub-
tree rooted at i (i′). By contradiction, suppose that there is another
solution for one of these sub-problems (S′i for i) which is more
expensive than the original optimal solution (Si) for mapping the
sub-tree rooted at this node, but it gives rise to a better solution for
mapping the tree rooted at node t. This can only happen if using S′i
results in returning a value by SLD() in Eq. 1, which is smaller than
the difference between cost of Si and S′i. Based on lemma 3.4, this
cannot happen. Therefore, the theorem is proven �.

As mentioned in Section III-B, the above proof is based on the
assumption of having linear relation between cost of a gate and its
number of inputs (which is a reasonable assumption). If this relation
is not linear (e.g. exponential), then the optimality of the proposed
algorithm cannot be guaranteed.

D. DAG Mapping
Most of the terminology and methods presented for trees in this

section can be easily extended for DAGs. For example, the reverse
level for node i can be defined as length of the longest path from node
i to any root node of the graph. For DAG mapping, we developed
the following heuristic: After computing k-feasible cuts and their
functions for each node, similar to what is presented in Section III-B,
in a topological ordering traversal, the value of the cost function is
computed for each node using Eq. 1. The main difference is that while
choosing the best cut for a node, if the following inequality holds
for one of the inputs (boundary nodes) of a cut (e.g. q), Cost∗(q) in
Eq. 1 will be set to 0.

(rep(q)− 1 )× Lq

D
≥ 1 (15)

where D is the depth of the AIG representation of the given Boolean
network, which is defined as the largest logic level among its nodes,
rep(q) is the number of times node q has been used up to now,

and Lq is the logic level of node q. The intuition behind this
heuristic is to prevent replication of big cones of logic, which are
already implemented and used for implementing other nodes. Note
that multiplication by the normalized logic level (i.e., Lq

D
) should

not be removed from the said inequality, otherwise, the generated
mapping solutions will be very unbalanced. For mapping DAGs, line
3 of the Algorithm 1 should be modified to capture the revision given
by Eq. 15.

IV. EXPERIMENTAL RESULTS

The presented path balancing technology mapping algorithm is
implemented inside ABC [13]. We implemented two versions of path
balancing mappers, BalancedMap (BM), and BalancedMapDelay
(BMD). In BM, the most cost efficient solutions as in Section III are
computed. BMD chooses the most cost efficient matches for each
node of the network subject to not degrading the best achieved delay
in a prior delay optimization pass. For comparison, we have included
results from [10], which is referred to as PBMap from herein, and also
extracted experimental results using the synthesis approach presented
in [9] for SFQ circuits; in this synthesis approach, circuits are mapped
using default cut-based technology mapper of ABC, followed by
inserting path balancing DFFs, applying standard retiming to reduce
the total DFF count, and finally, inserting splitters. In the rest of this
paper, we refer to this baseline synthesis approach by Base.

An SFQ library of gates as in [34] consisting of and2, or2, xor2,
not, splitter, JTL, DFF, and MUX21 logic gates is used. Several
benchmark circuits from ISCAS [16], EPFL [36] benchmark suites,
and some arithmetic circuits are used. The complexity of these
circuits ranges from s38584 with 12/278 I/Os, 19407 nodes, 32910
edges, and 25185 cubes, sin with 24/25 I/Os, 5416 nodes, 10832
edges, and 5416 cubes to dec with 8/256 I/Os, 304 nodes, 608 edges,
and 304 cubes. Table I shows results for area and delay. For Area,
two sets of numbers are reported; the numbers inside parenthesis are
the total area of gates, path balancing DFFs, and splitters, while the
area numbers outside parenthesis does not include area of splitters.
The reason behind reporting two sets of results for area is to show
that our algorithms not only reduce the total area of gates and DFFs
as our cost function demands, but it also provides area reduction in
case of considering area of splitters too. Delay (in ps) is the critical
path delay, which is the sum of delays of gates in the critical path
of the mapped circuit.

Figs. 8, 9, and 10 compare the value of the cost function (Eq.
8), normalized total static power consumption, and total Josephson
junction count for BM, PBMap, and Base. In the following, some
statistics are reported. Similar to the method in Table I, for area
two sets of numbers are reported; the one inside parenthesis is
for area of gates, DFFs, and splitters. To save space, the results
for total number of path balancing DFFs is not included in this
paper, but their statistics are mentioned in the following. For the
priority circuit, the cost function, area, total JJ count (#JJs), total
number of required path balancing DFFs (#DFFs), and static power
consumption are reduced by 1.07×, 1.12× (1.11×), 1.09×, 1.18×,
and 1.10× compared to the Base, but its delay is degraded by 6.0%.
On average for all benchmark circuits, BM decreases the value of
the cost function, area, #JJs, #DFFs, and static power consumption
by 86.1%, 29.5% (26.3%), 25.6%, 27.8%, and 25.1% over Base,
while the average delay is increased by 5.6%. As seen, the average
area reduction in case of considering the area of splitters is reduced
from 29.5% to 26.3%. This is because on average the path balancing
algorithm generates circuits with more fanout counts, therefore, it
requires more number of splitters. BM also shows superiority over
PBMap; it reduces area, #JJs, and static power consumption by an
average of 6.0%, 6.2% (5.9%), and 5.8% and up to (for ISCAS c1908
benchmark circuit) 24.6%, 24.9% (24.7%), and 24.3% compared with
PBMap. BMD is able to offer savings on all of these metrics over the
baseline without degrading the critical path delay. On average for all
benchmark circuits, BMD reduced the value of the cost function, area,
#JJs, #DFFs, and static power consumption by 5.7%, 3.4% (2.3%),
3.8%, 6.0%, and 3.3% compared to the Base.
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TABLE I: Area and delay results for BalancedMap (BM), baseline
(Base) [9], and PBMap [10]. For area two sets of numbers are reported;
numbers inside parenthesis include area of gates, path balancing DFFs,
and splitters, while the area numbers outside parenthesis do not include
area of splitters. Since delays of circuits generated by PBMap is very
close to the same generated by BM and due to the lack of space, they
are removed from the table.

Area (mm2) Delay (ps)

Circuits Base PBMap BM Base BM

c5315 26.7 (42.1) 23.4 (37.3) 20.8 (33.3) 173.6 182.2

c3540 13.6 (21.8) 12.5 (20.4) 12.5 (20.5) 204.8 226.6

c7552 23.6 (37.4) 21.4 (34.4) 19.6 (31.5) 125.4 142.6

c2670 16.2 (25.1) 14.7 (23.1) 13.9 (21.7) 123.8 136.8

c1908 5.9 (9.3) 5.5 (8.8) 4.4 (7.0) 125.8 126.8

c6288 25.0 (39.9) 26.2 (41.6) 24.6 (34.4) 526.8 533.6

s35932 57.4 (97.4) 44.1 (76.2) 41.7 (72.4) 225.6 234.3

s38584 119.2 (194.4) 105.2 (173.9) 100.8 (167.1) 273.6 305.6

s5378 17.6 (28.4) 15.6 (25.6) 13.7 (22.2) 162.2 165.3

sin 113.0 (177.0) 97.9 (154.9) 94.2 (150.4) 1133.2 1274.2

dec 3.4 (6.2) 1.9 (4.0) 1.9 (4.0) 29.4 30.0

priority 100.9 (152.3) 47.5 (72.0) 47.7 (72.0) 1890.4 2004.8

i2c 21.1 (33.7) 19.7 (31.6) 19.5 (31.5) 128.4 129.4

KSA32 5.4 (8.9) 5.4 (8.8) 5.4 (8.8) 88.0 88.0

IntDiv8 12.6 (19.4) 10.5 (16.2) 9.9 (15.3 ) 619.4 640.4
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Fig. 8: Value of the cost function (Eq. 11) for different circuits generated
by three different mappers. For better exhibition purposes data for sin,
priority, s35932, and s38584 circuits are scaled down by a factor of five.

To verify the correct functionality of circuits generated by our
algorithm, we simulated a few circuits generated by our algorithm
including a 2-bit Kogge-Stone Adder (KSA2) using JSIM [37]. Fig.
11 shows the corresponding waveforms for this adder. Four sets of
random inputs (a0=1010, a1=1100, b0=0101, b1=1001, cin=0011)
and their correct outputs generated by this adder (S0=1100, S1=0110,
Cout=1001) are shown in this figure. Please note that in these
waveforms, presence of a pulse means “1” and absence of a pulse
means ‘0”. Finally, post place-and-route results show that circuits
generated by our algorithm will provide a considerable improvement
on total chip area as well. For example, chip area for the dec circuit
from the EPFL suite mapped by BM is reduced by around 33%
compared to the Base. Fig. 12 shows the post place-and-route result
of the dec circuit.
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Fig. 9: Normalized total static power consumption (the main source of
power consumption in SFQ circuits [15]). For better exhibition purposes
data for sin, priority, s35932, and s38584 circuits are scaled down by a
factor of five.
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Fig. 10: Total number of Josephson junctions for gates, path balancing
DFFs, and splitters. For better exhibition purposes data for sin, priority,
s35932, and s38584 circuits are scaled down by a factor of five.

V. CONCLUSIONS

In this paper, a dynamic programming-based path balancing tech-
nology mapping algorithm is presented. This algorithm is designed
to minimize area of gates and required path balancing D-Flip-Flops
(DFFs) in Single Flux Quantum (SFQ) logic circuits, and it can be
used for reducing full path balancing overhead in any technology
which requires having the same length for all logic paths. The
optimality of the algorithm is proven for circuits with tree structure
and it is shown that a modified version of the algorithm acts as a very
effective heuristic in generating cost efficient solutions for general
Directed Acyclic Graphs. Experimental results in SFQ technology
showed that on average for 15 benchmark circuits, our technology
mapper reduced area, Josephson junction count, DFF count, and static
power consumption by 26.3%, 25.6%, 27.8%, and 25.1% compared
to the state-of-the-art academic technology mappers.
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Fig. 11: Simulation waveforms for a 2-bit Kogge-Stone Adder (KSA2)
generated by MB. For four sets of random inputs, correct outputs for S0,
S1, and Cout are shown.

 

Fig. 12: Post place-and-route of dec circuit which is mapped by BM.
Dimensions are 3960µm × 3310µm. The dimensions are increased to
4870µm×3990µm when the circuit is mapped using the map command
of ABC.

The presented place-and-route results (Fig. 12) are generated by
using software tools provided by S. N. Shahsavani and T. Lin from
the University of Southern California.

REFERENCES

[1] G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics, vol. 38, no. 8, pp. 114–117, 1965.

[2] H. Golnabi, “Carbon nanotube research developments in terms of pub-
lished papers and patents, synthesis and production,” Scientia Iranica,
vol. 19, no. 6, 2012.

[3] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff,
“Graphene and graphene oxide: synthesis, properties, and applications,”
Advanced materials, vol. 22, no. 35, pp. 3906–3924, 2010.

[4] A. Khitun and K. L. Wang, “Non-volatile magnonic logic circuits
engineering,” Journal of Applied Physics, vol. 110, no. 3, p. 034306,
2011.

[5] D. S. Holmes, A. L. Ripple, and M. A. Manheimer, “Energy-efficient
superconducting computing-power budgets and requirements,” IEEE
Transactions on Applied Superconductivity, vol. 23, no. 3, 2013.

[6] K. Likharev and V. Semenov, “RSFQ logic/memory family: A new
josephson-junction technology for sub-terahertz-clock-frequency digital
systems,” IEEE Transactions on Applied Superconductivity, vol. 50,
no. 1, 1991.

[7] W. Chen, A. Rylyakov, V. Patel, J. Lukens, and K. Likharev, “Rapid
single flux quantum T-flip flop operating up to 770 GHz,” IEEE
Transactions on Applied Superconductivity, vol. 9, no. 2, pp. 3212–3215,
1999.

[8] M. H. Volkmann, A. Sahu, C. J. Fourie, and O. A. Mukhanov, “Exper-
imental investigation of energy-efficient digital circuits based on eSFQ
logic,” IEEE Trans. Appl. Supercond, vol. 23, no. 3, p. 1301505, 2013.

[9] N. Katam, A. Shafaei, and M. Pedram, “Design of complex rapid single-
flux-quantum cells with application to logic synthesis,” in 16th Inter-
national Superconductive Electronics Conference, ISEC 2017. IEEE,
2017.

[10] G. Pasandi and M. Pedram, “PBMap: A path balancing technology map-
ping algorithm for single flux quantum logic circuits,” IEEE Transactions
on Applied Superconductivity, vol. 29, no. 4, pp. 1–14, 2019.

[11] N. Katam, A. Shafaei, and M. Pedram, “Design of multiple fanout
clock distribution network for rapid single flux quantum technology,”
in 22nd Asia and South Pacific Design Automation Conference (ASP-
DAC). IEEE, 2017, pp. 384–389.

[12] G. Pasandi, A. Shafaei, and M. Pedram, “SFQmap: A technology
mapping tool for single flux quantum logic circuits,” in International
Symposium on Circuits and Systems (ISCAS). IEEE, May 27, 2018.

[13] A. Mishchenko et. al, “ABC: A system for sequential synthesis and
verification,” Berkeley Logic Synthesis and Verification Group, 2018.

[14] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”
Algorithmica, vol. 6, no. 1, pp. 5–35, 1991.

[15] O. A. Mukhanov, “Energy-efficient single flux quantum technology,”
IEEE Transactions on Applied Superconductivity, vol. 21, no. 3, pp.
760–769, 2011.

[16] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85
benchmarks: A case study in reverse engineering,” IEEE Design & Test
of Computers, vol. 16, no. 3, pp. 72–80, 1999.

[17] W. P. Burleson, M. Ciesielski, F. Klass, and W. Liu, “Wave-pipelining:
a tutorial and research survey,” IEEE Transactions on very large scale
integration (vlsi) systems, vol. 6, no. 3, pp. 464–474, 1998.

[18] L. Cotton, “Maximum rate pipelining systems,” in Procs. AFIPS Spring
Joint Computer Conference, 1969, 1969.

[19] D. Strukov, A. Mishchenko, and R. Brayton, “Maximum throughput
logic synthesis for stateful logic: A case study,” in Reed-Muller 2013
Workshop, 2013.

[20] K. Keutzer, “DAGON: technology binding and local optimization by dag
matching,” in 24th Conference on Design Automation. IEEE, 1987, pp.
341–347.

[21] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 13, no. 1, pp. 1–12, 1994.

[22] K. Chaudhary and M. Pedram, “Computing the area versus delay trade-
off curves in technology mapping,” IEEE Trans. on Computer Aided
Design, vol. 14, no. 12, pp. 1480–1489, 1995.

[23] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational
and sequential mapping with priority cuts,” in ICCAD, 2007, pp. 354–
361.
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