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Abstract—Engineering Change Order (ECO) and logic de-
bugging problems where multiple locations in the circuit must
be modified are formulated with Quantified Boolean Function
(QBF) and set-sovering techniques. The formulation is based on
the fanin selection method for each gate. Although the resulting
formulation for single portion changes is basically equivalent to
Sets of Pairs of Functions to be Distinguished (SPFD) [3], the way
of its computations is quite different. Moreover, the simultaneous
changes for multipl portions becomes Boolean Relation extension
of SPFD. Experimental results and applications to various logic
optimization problems are also shown.
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I. INTRODUCTION

Engineering Change Order (ECO) in logic design [1] [2]

happens when the specification changes after its implemen-

tation has been generated. In such cases, it may be better

to ”modify” implementation in such a way that the modi-

fied implementation becomes logically equivalent to the new

specification, instead of resynthesizing a new implementation

from the modified specification, since the resynthesis pro-

cess may generate structurally and performance-wise (timing,

power consumption, and others) very different. Although the

resynthesized implementation is logically correct, its perfor-

mance including timing and power consumption can be very

different due to the structural difference from the original

implementation,

Logic debugging must be performed when some bug in

the specification is found after its implementation has been

generated. The situation is similar to ECO, and it is sometimes

much better to modify the implementation accordingly to

the debugged specification instead of resynthesizing the new

implementation from the debugged specification.

In this paper ECO and logic debugging processes are

mathematically formulated for combinational circuits or fixed

time frame expanded sequential circuits. Current implemen-

tations are adjusted by changing a single or multiple target

locations in the circuits. That is, first a single or multiple

locations are picked up. Then those locations are replaced with

another single or multiple sub-circuits so that the resulting

implementation becomes logically correct with respect to the

modified/new specification. Thus, the structural changes in the

implementations can be kept small.

The problem with single location changes is discussed

first followed by the case of multiple location changes. The

appropriate inputs to the sub-circuit for a single location

change are searched out of all internal signals and primary

inputs, and a set of inputs with the minimum cost is obtained

with set-covering formulation. Once the set of inputs to the

sub-circuit is found, the logic function to be realized by the

sub-circuit can be searched as Quantified Boolean Formula

(QBF) problem.

In the case of multiple location changes, first mathematical

formulation is given, although it is computationally very

expensive to solve. A simple and fast method is to deal with

one location by one location sequentially instead of all together

simultaneously. Experimental results are given with various

ordering heuristics.

Various application of the proposed method to logic opti-

mization and their experimental results are also given.

The set-covering formulation has been turned to be equiva-

lent to the logic optimization with Sets of Pairs of Functions

to be Distinguished (SPFD) [3] [4], although the proposed

method has been independently developed. A brief discussion

on this issue and the extension of SPFD with Boolean Relation

[5] [6] are given.

The paper is organized as follows. In the next section the

ECO and debugging problem are mathematically formulated

with modifications of single and multiple locations. Then the

proposed methods is given in the following section. Discussion

with respect to SPFD is also given. Various application of the

proposed method including the logic synthesis with multiple-

output gates as well as their the experimental results are

given. The final section gives concluding remarks and future

directions.

II. PROBLEM FORMULATION

There are two situations in terms of mathematical formu-

lation for ECO and logic debugging problems: single target

changes and multiple target changes, although the single target

change can be considered to be a special case of the multiple

target changes. For easy to explain and understand discussions,

they are formulated separately.

Figure 1 (a) is the target design to be modified for ECO and

logic debugging when we change only one internal location.

978-3-9819263-4-7/DATE20/ c©2020 EDAA 744

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 07,2023 at 17:49:54 UTC from IEEE Xplore.  Restrictions apply. 



Special Session Paper

� �

������ �������

�

� �

������ �������

�

� �

������ �������

�
�

 !"#�$%&%�!'#(%$(�%�#�)#*+#,)-%.%+-  *"#���+$�!'#�%&�!'#�#�)#*+#(/!�&+-

 ("#0�+#-%..+$+��#%�����#.)$#�

���������	
���������	

 
! 	
���������	

Fig. 1. Target problem with single location
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Fig. 2. Target problem with multiple locations

Given a circuit, the target of the gate to be replaced with a

gate or sub-circuit is first determined. Such a selection can

be made based on signal dependency analysis techniques and

is not discussed in this paper. In the figure signal t is the

target signal. Please note that there is only one target signal in

this case, and the case targeting multiple signals is discussed

later. Then signal t is separated from the gate (for example,

NOR gate in the figure) as shown in the figure (b). Now the

remaining problem is to find a set of inputs to the gate or sub-

circuit in general which will be connected to signal t as shown

in the figure (c). Once the set of inputs to the sub-circuit is

found, there are ways to automatically find the required logic

function for the sub-circuits, such as the one through QBF

formulation with LUT (Look Up Table) [8], [9].

Corresponding problem for multiple target signals is shown

in Figure 2. In the figure there are two target signals, t1 and

t2. The way to rectify the circuit is the same as before, but

the two signals must be replaced with the new sub-circuits as

shown in the figures (a)-(c).

Please note that the functionality to be realized by the

sub-circuits for t1 and t2 depends on each other. That is,

even if the same sets of inputs are used for t1 and t2, the

functionality realized by the sub-circuit for t1 influence the

required functionality for the sub-circuit fot t2. If a different

function is chosen for the sub-circuit for t1, the function of the

sub-circuit for t2 may have to change. This is true not only

if one of the two signals is in the fanout code of the other

signal, such as the case of the figure (d), but also true when
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Fig. 3. The case where target signal must be 0

the fanout cones of the two signals somehow overlap.

Now let us formulate the case of Figure 1, i.e., single target

change. The following formulation is first introduced in [10]

[11]. The problem to be solved here is that given a circuit to

be modified (for example, the circuit shown in Figure 1 (a)),

find a set of inputs for the target signal t (for the example, the

set of inputs shown in Figure 1 (c)) in such a way that there

exists a logic function of the set of inputs for t by which the

entire circuit becomes logically equivalent to the modified/new

specification.

There are two sets of primary input values that we need to

pay attention to. The first is the set of primary input values

under which the value of the target signal t must be 0 in order

for the entire circuit to be equivalent to the specification. Such

set of values for primary inputs are called ”In0” in this paper.

The condition for In0 is shown in Figure 3. Under the primary

input values of In0, if the target signal t=0, the primary output

values are the same as the ones in the specification, and if t=1,

the primary output values are different from the ones in the

specification.

The other set is the primary input values under which the

target signal t must be 1 for the equivalence. Such set of values

are called ”In1”, and the condition for In1 is shown in Figure 4,

that is, if the target signal t=1, the primary output values are the

same as the ones in the specification, and if t=0, the primary

output values are different from the ones in the specification.

In0 and In1 are formally defined as follows. Here the

functionality of the specification is given by Spec(in) and

that of the implementation is given by Impl(in, t) where in

represents the primary inputs and t is the target signal.

∃In0, t.(t ∧ Impl(In0, t) = Spec(In0))
∧(t ∧ Impl(In0, t) != Spec(In0)).
∃In1, t.(t ∧ Impl(In1, t) = Spec(In1))
∧(t ∧ Impl(In1, t) != Spec(In1)).
If there are don’t cares existing in the specification, equality

and non-equality above should be based on them. That is,

when the primary input values correspond to don’t cares, the

implementation is always equal to the specification up to the

don’t cares.

Please note that the definition and notation above are a

little bit different from [10] [11]. Then the condition of the

existence of a logic function for the target signal t becomes

the following:
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Fig. 4. The case where target signal must be 1

Condition of function existence

For all pairs from In0 and In1, at least one of the inputs to the

sub-circuit for t must have different values, as t must produce

different values for all of those pairs.

This is a necessary and sufficient condition for the existence

of a logic function for t.

So far single target cases, such as the case shown in Figure

1, have been discussed. For multiple target cases, such as

the two target case shown in Figure 2, their mathematical

formulation is simply extensions for multiple target signals,

such as t1 and t2 in the case of Figure 2. It is, however, much

more complicated as the required set of inputs for t1 and the

required inputs for t2 depend on each other, i.e., depending on

the selected inputs for t1, the condition for t2 changes. Because

of this, the exact condition for the multiple target singles must

include the conditions for all value combinations (which are

exponentially many) of the multiple target signals. Therefore,

if the number of the target signals becomes large, the size of

the entire condition can be very large and become impossible

to solve. In such cases, practically the target signals must be

processed one by one. Suppose there are n of target signals,

t1, t2, ..., tn. First the processing order of t1, t2, ..., tn is

determined. Here let us suppose the order is the original order

which is t1, t2, ..., tn. Then all signals but t1 are quantified out,

and the single target method discussed above is applied. With

its result, signal t is replaced with a sub-circuit in the original

circuit (the circuit before the quantifying out operations). That

has target singles, t2, ..., tn. This process is repeated for all of

ti’s.

Although this method can find a set of solutions for all the

target signals, t1, t2, ..., tn, the solutions fully depend on the

order of processing t1, t2, ..., tn. So it is very important to

use ”good” processing order, and that will be discussed in the

section on the experiments below.

III. PROPOSED METHODS

Our method is to formulate the searching problem for the

sets of inputs to the sub-circuit as a set-covering problem. Let

us discuss the proposed method through an example circuit

shown in Figure 5. It is the smallest ISCAS85 benchmark

circuit, called C17, and the original circuit is shown in the

figure (a). We assume this is the target specification. Please
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Fig. 5. Example of ECO

note that although the specification is given as a logic circuit,

no internal structure is analyzed in the specification. Only

the primary input-output relations are used in the following.

Therefore, specification can be given in any form as long as

that is logically analyzable.

Let us suppose the circuit shown in the figure (b) is given

as the current implementation. That is, the circuit in the figure

(b) must be debugged/modified so that it becomes logically

equivalent to the specification of the figure (a). As can be

seen from the figures, the target signal t has a wrong set of

inputs. n11 and i7 are the correct inputs for the sub-circuit

for t, but currently n10 and n16 are the inputs. So the target

signal t is detached from the OR gate in the figure (b), and

appropriate sets of inputs and appropriate logic functions for

the sub-circuit for t are searched.

Examples of In0 and In1 for the example are shown

in Figure 6. When the primary inputs, (i1,i2,i3,i6,i7) are

(1,0,0,0,1), if t=0 both of the two primary outputs, o22, o23

are correct whereas if t=1, one of the primary output, o23

becomes incorrect, as shown in the figure (a). Similarly, when

the primary inputs, (i1,i2,i3,i6,i7) are (0,1,1,1,1), if t=1, both of

the two primary outputs, o22, o23 are correct whereas if t=0,

one of the primary output, o23 becomes incorrect, as shown

in the figure (b).

These In0 and In1 give a necessary condition on the

existence of the logic function for the sub-circuit for t, i.e.,

at least one of the inputs to the sub-circuit must have different

values on In0 and In1. If the two tables shown in Figure 6

are compared, the signal n11 has different values for In0 and

In1. Therefore, n11 becomes the candidate for the input to the

sub-circuit for t.

Unfortunately n11 alone cannot guarantee the existence of
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Fig. 6. Examples of In0 and In1
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Fig. 7. Examples of covering table

the function. If the input to the sub-circuit for t is only n11,

there is no way to rectify the implementation, which can be

made sure, for example, by the method shown in [8] [9]. That

can also be checked by the following SAT problem:

∃In0, In1, t.((t ∧ Impl(In0, t) = Spec(In0))
∧(t ∧ Impl(In0, t) != Spec(In0))
∧(t ∧ Impl(In1, t) = Spec(In1))
∧(t ∧ Impl(In1, t) != Spec(In1)) ⇒ p(In0) != p(In1) ...(1)
where p represents the values of the current set of inputs to

the sub-circuit for t (For the example above, p is just n11) for

a primary input value. If this formula is UNSAT, the current

set of inputs are sufficient for the existence of a logic function

for the sub-circuit for t. If this is SAT, there are more required

cases for In0 an In1 which are not yet covered by the In0 and

In1 so far accumulated.

By solving the above SAT problem (1) for the example, the

following additional In0 and In1 can be found, as (1) becomes

SAT:

In0: (i1,i2,i3,i6,i7)=(0,0,0,0,1). In1: (i1,i2,i3,i6,i7)=(1,0,0,0,0).

Now there are two of In0 and two of In1, and a set-covering

problem can be defined to find another necessary set of inputs

to the sub-circuit for the target signal t, as shown in Figure 7.

The covering table has four rows which correspond to all

combinations of In0 and In1. Those four rows correspond

to In0={10001,00001}, in1={01111,10000}: a(10001,01111),
b(10001,10000), c(00001,01111), d(00001,10000). For each

cell in the table, if the values are different between the two

primary inputs (In0 and In1), it is marked as 1. Otherwise it

is marked as 0. Now the set-covering problem is to have a

minimum set of columns (signals) which cover all rows (for

every row, one cell must be marked as 1). In the case of Figure

7, one of minimum covers is (i7,n11). With these signals as
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Fig. 8. Overall of the proposed processing flow

p in the above SAT problem (1), it becomes UNSAT. Hence

(i7,n11) are the minimum set of inputs to the sub-circuit for

the target signal t.

Overall processing flow becomes the one shown in Figure 8.

For the case of multiple target signals, as discussed above, the

exact formulation becomes exponentially large with respect to

the number of target signals. So each target signal is processed

one by one with a predetermined order, which may not reach

the global optimum. How to decide order or how to process

multiple target simultaneously is still an issue to be researched.

The covering table just discussed has basically the same

information on the freedom of circuit transformations as Sets

of Pairs of Functions to be Distinguished (SPFD) [3]. Each row

in a covering table shows the set of pairs of functions to be

distinguished. During the selection process of the inputs to the

sub-circuit for the target signal t, the covering table grows each

time the SAT problem (1) becomes SAT. That is the covering

table before the SAT (1) becomes UNSAT corresponds to a

subset of SPFD for the target signal t. Also, the algorithm

discussed above is to compute the SPFD for the target signal

t in a pinpoint way whereas the algorithm to compute SPFD

in [4] is incremental following the topological order from the

primary outputs.

From the viewpoint of the logic optimization using the

SPFD or our covering table, the two algorithms, one discussed

above which directly computes SPFD for the target signal, and

the other shown in [4] which incrementally and topologically

computes SPFD, may be combined for efficient processing.

How to combine them would be an interesting problem but is

beyond the scope of this paper.

Also, in the case of multiple target signals, the exact

freedom for selecting sets of inputs to the sub-circuits becomes

Boolean Relation [5] [6] instead of don’t cares or simple
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Fig. 9. Need formulation with Boolean Relation
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Fig. 10. Target signals may be grouped together

SPFD. Figure 9 shows an example of Boolean Relation. Here

there are two target signals, t1 and t2. The allowed values

of t1 and t2 for some primary input values are shown in the

table of the figure. They are the values by which all of the

primary output values become equivalent to the specification

with the primary input values. From the table, if (t1,t2)=(0,0),

(1,0) or (1,1), the primary output values are correct whereas if

(t1,t2)=(0,1), the primary output values become wrong. This

relation cannot be captured as don’t cares nor SPFD, but can

be represented as Boolean Relation. Under Boolean Relation,

the allowed values for the target signals must be listed up

instead of merging as don’t cares. Logic optimization under

Boolean Relation has been explored for two-level in [5] and

for multi-level in [6]. For the input selection problem, SPFD

or covering table must be extended to be able to deal with

Boolean Relation version of them.

When dealing with multiple targets, depending on the

dependence of the fanout cones of the target signals, more

efficient processing order can be considered. Basically if the

two targets fanout cones are independent as shown in Figure

10 (a), they can be simply processed one by one in any order.

On the other hand, if they are dependent as shown in the figure

(b), processing order influences the results. Moreover, when

some of the target are depending and some are independent,

such as the case of the figure (c), a subset of targets which

are independent each other can be processed in any order.

When determining the processing order of multiple targets, it

is important to take these situations into account as discussed

in the experiments shown later.
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Fig. 11. Logic synthesis with multiple-outputs gates

IV. VARIOUS APPLICATION

The proposed method gives ways to perform ECO and logic

debugging as has been discussed, and it can also be applied to

logic optimization in general. By changing the sets of inputs

to gates in the given circuit, circuit topology can be largely

modified which may lead to more optimized circuits.

Apart from regular ways to optimize multi-level logic cir-

cuits, the proposed method may work more effectively on the

following logic optimization problems.

• Optimization of LUT based circuits, such as FPGA

• Logic synthesis and optimization with multiple-outputs

gates

With the proposed method minimum sets of inputs to LUTs

in networks of LUTs or FPGA circuits can be searched out

of all primary inputs and internal signals. With associated

covering tables, minimum numbers of inputs to LUTs can be

found.

The proposed method can also efficiently find a set of gates

which can be merged as a single gate with multiple outputs.

Logic synthesis has been studied for a long time, but almost

all of such effort is spent for circuits having only single output

gates or cells. For more effective synthesis, however, it may be

better to try to use multiple-output gates or cells. For example,

integer array multipliers consist of a number of adders which

are considered as multiple-outputs gates. The proposed method

can find opportunities for multiple single-output gates to be

merged as a multiple-outputs gate as shown in Figure 11.

By solving the set-covering problem appropriately the circuit

transformation shown in the figure can be performed.

V. EXPERIMENTAL RESULTS

Preliminary experimental results have been shown in [10]

[11]. Here additional results are presented for:

• Various processing order of multiple target signals

• Fanin (numbers of inputs to gates) minimization for

FPGA

• Logic optimization for multiple-output gates

The result of various processing orders of multiple target

signals on the benchmarks used in ICCAD 2017 CAD contest

[7] are shown in Figure 12. The results are measured by the

cost function (weights) given by the CAD contest. The smaller

the better. Three results are reported here for the multiple

target signals. The first one (columns 2-5) is the result by

processing all targets simultaneously. Please note that this
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Fig. 12. Logic synthesis with multiple-outputs gates
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Fig. 13. Logic synthesis with multiple-outputs gates

needs exponentially many case analysis, and because of that,

it takes much longer time, and for some benchmarks it does

not finish. The second one (column 6-9) shows the result by

trying all possible orders of multiple targets. The last one

(column 10-13) is the result using a heuristic for ordering

the multiple targets.b The simultaneous method always gives

the best results if it ever finished. That is the reason why the

heuristic method sometimes gives better results. There are still

rooms for improvements.

The proposed method has also been applied to logic op-

timization targeting networks of LUTs, such as FPGA. The

given circuits are first converted into networks of LUTs by us-

ing the logic synthesis and verification tool, ABC [12] through

appropriate scripts. Then the circuits are further optimized

by reducing the numbers of inputs to LUTs by the proposed

method. As can be seen from the experimental results shown

in Figure 13, 10% of further reduction is observed in average.

The area is measured normalized to the size of 5-input LUT.

With the proposed method, multiple single-output gates are

tried to be merged as a single multiple-outputs gate. The

experimental results are shown in Figure 14. As can be seen

from the results, significant numbers of single-output gates can

be merged.

VI. CONCLUSIONS AND FUTURE DIRECTION

The selection method for sets of inputs to gates in a circuit

has been discussed with application to not only ECO and

logic debugging, but also FPGA circuit optimization and logic
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Fig. 14. Logic synthesis with multiple-outputs gates

synthesis with multiple-outputs gates. The methods use the

same freedom of SPFD and the optimum sets of inputs to

gates can be obtained by solving set-covering problem.

For the case with multiple targets, there can be more

effective ways to deal with, which is one of the future issues.

Also, the way to compute SPFD equivalent freedom of circuit

transformations may become more efficient by combing the

set-covering formulation and the method discussed in [4],

which is also another future issue.
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