
Expanding In-Cone Obfuscated Tree for Anti SAT
Attack

RuiJie Wang∗, Li-Nung Hsu∗, Yung-Chih Chen†, TingTing Hwang∗,
∗Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

†Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
wrj651121@gmail.com, kartd0109153@gmail.com, ycchen.ee@mail.ntust.edu.tw, tingting@cs.nthu.edu.tw

Abstract—Logic locking is a hardware security technology
to protect circuit designs from overuse, piracy, and reverse
engineering. It protects a circuit by inserting key gates to hide
the circuit functionality, so that the circuit is functional only
when a correct key is applied. In recent years, encrypting the
point function, e.g., AND-tree, in a circuit has been shown to be
promising to resist SAT attack. However, the encryption technique
may suffer from two problems: First, the tree size may not be
large enough to achieve desired security. Second, SAT attack could
break the encryption in one iteration when it finds a specific input
pattern, called remove-all DIP. Thus, in this paper, we present a
new method for constructing the obfuscated tree. We first apply
the sum-of-product transformation to find the largest AND-tree
in a circuit, and then insert extra variables with the proposed
split-compensate operation to further enlarge the AND-tree and
mitigate the remove-all DIP issue. The experimental results show
that the proposed obfuscated tree can effectively resist SAT attack.

Index Terms—Hardware security, Logic locking, SAT attack,
AND-Tree

I. INTRODUCTION

Today’s IC supply chain involves many secret information
and data. The main concern to all parties is the silicon
intellectual property (IP) protection. Due to the high R&D
cost and complex chip manufacturing process, very few com-
panies can provide a one-stop chip manufacturing solution,
including wafer production, packaging and testing. Most IC
design companies outsource their IC manufacturing to high-end
foundries. Although such a business model is cost-effective,
it also exposes IC design companies to the risks of IC/IP
threats, such as unauthorized use, piracy, overproduction, re-
verse engineering, hardware Trojans, and counterfeiting. A
report from the industry association Semiconductor Equipment
and Materials International (SEMI) states that IP infringements
cost the industry an estimated 4 billion dollars annually [1].

To avoid such hazardous situations, many countermeasures
have been developed. Logic locking is one of the promising
countermeasures [2], which encrypts a circuit by inserting key
gates such that if the secret/correct key is not applied, the circuit
cannot function normally. In early days, key gates were placed
at the carefully-selected locations to prevent sensitization-based
attacks, which cracked the secret key by propagating it to the
circuit output. After the powerful SAT-based attack technique
[3], called SAT attack, was proposed, many recent protection
techniques aimed to defend against SAT attack.

SAT attack finds the correct key by iteratively pruning error
keys with SAT solving. According to the defense principle,
we can divide the protection techniques into two categories: 1)
The SAT-hard techniques which exploit the characteristics of
the SAT solver to increase the solving time of each iteration
[4]–[6]. 2) The techniques which encrypt the point function to

increase the number of required iterations by SAT attack [7]–
[11].

A point function can be an in-cone or out-of-cone point
function. The former originally exists in the circuit [7], [8], and
the latter is newly added into the circuit [10], [11]. Both types
of point functions are effective to mitigate SAT attack but have
their own characteristics. For the in-cone point function, it may
not be large enough to provide desired resistance against SAT
attack. Additionally, there exists a specific input pattern, called
remove-all DIP, which allows SAT attack to crack the secret
key immediately. For the out-of-cone point function, although
a sufficiently large function can be inserted, it is vulnerable to
Removal attack [12]. An attacker can break the encryption by
identifying the added structure and directly removing it without
needing the secret key. Additionally, encrypting an out-of-cone
point function also suffers from the remove-all DIP problem.

In order to defend against Removal attack, the corrupt-and-
correct locking method was proposed by [13], [14]. It first
corrupts the original function, and then adds an out-of-cone
structure to restore the function. When the introduced structure
is removed, the original function can never be restored. Thus,
the secret key is required to break the encryption. However, the
method also suffers from the remove-all DIP problem.

In this paper, we propose a new encryption method to
construct an obfuscated AND-tree for defending against SAT
attack and Removal attack simultaneously. We introduce an
operation, called split-compensate, to expand the size of the
in-cone AND-tree and reduce the number of remove-all DIPs.
In the experiments, we applied the proposed method to a set of
ISCAS’85 [15] and MCNC benchmarks [16]. The experimental
results show that the split-compensate operation can success-
fully expand the size of the in-cone AND-tree and mitigate the
remove-all DIP problem. Additionally, the encryption method is
effective to resist SAT attack. 6 out of 7 encrypted benchmarks
cannot be broken by SAT attack within a time limit of 3 hours.

The rest of this paper is organized as follows: Section II
reviews some background on the point function-based logic
encryption. Section III presents our motivation. Section IV
introduces the relevant properties of an obfuscated AND-tree to
support the proposed method. Section IV presents the proposed
encryption method. Section V shows the experimental results.
Finally, the conclusion is presented in Section VI.

II. PRELIMINARIES
Given a Boolean function F : I → O, where I = {0, 1}n

and O = {0, 1}m, its obfuscated circuit has a Boolean function
F obfuscated : I × K → O, where K denotes the key inputs



TABLE I: Truth Table of 2-input obfuscated AND-tree, T obfuscated = (x1⊕
k1)(x2 ⊕ k2).

T obfuscated

x1x2 T k̂1 k̂2 k̂3 k̂4
ˆin1 00 0 0 0 0 1
ˆin2 01 0 0 0 1 0
ˆin3 10 0 0 1 0 0
ˆin4 11 1 1 0 0 0

and K = {0, 1}q . A key k̂s ∈ K is said to be a secret/correct
key, if F obfuscated(în, k̂s) = F (în) for all în ∈ I .

A single-output Boolean function F is said to be a one-
point function, if there exists only one input pattern evaluating
F to 1. For example, an AND function is a one-point function.
Previous work [9] has demonstrated that encrypting a circuit
by obfuscating the existing AND-tree, i.e., an AND function,
is effective to defend against SAT attack.

An n-input AND-tree T can be expressed as T = ∧n
i=1xi.

An n-input obfuscated AND-tree T obfuscated encrypted with
XOR/XNOR gates can be represented as T obfuscated =
∧n
i=1(xi ⊕ / ⊙ ki), where xi and ki denote the ith tree input

and key input signals, respectively. Both XOR and XNOR can
be used as the key gates. For ease of explanation, we use only
XOR as the key gate to describe the proposed method in the
rest of this paper.

SAT attack [3] is an attack technique to break logic locking.
It iteratively identifies a distinguish input pattern (DIP) to prune
error keys with SAT solving. A DIP is an input pattern that can
cause two different keys to generate different outputs. Thus,
when a DIP is found, at least one key is incorrect and can be
pruned. When all the error keys are pruned, the correct key can
be cracked successfully.

Let us use an example to demonstrate why an obfuscated
AND-tree is resistant to SAT attack. Table I shows the truth
table of a 2-input obfuscated AND-tree, T obfuscated = (x1 ⊕
k1)(x2 ⊕ k2). The correct key is k̂1. In this example, all the
input patterns, în1 ∼ în4, can be DIPs. If SAT attack identifies
a DIP in the ascending order, 4 iterations are required to prune
all the error keys. For an obfuscated AND-tree with n inputs,
the number of required iterations is 2n − 1.

However, in fact, 2n − 1 is the worst-case complexity, since
there exists a special DIP, called remove-all DIP, which can
cause SAT attack to prune all the error keys in one iteration.
In the above example, în4 is the remove-all DIP. Since SAT
attack finds a DIP arbitrarily, when n is large enough and there
exist only few remove-all DIPs, the worst-case complexity can
be used as a measure of security.

III. MOTIVATION

The one-point function is an effective defense structure
against SAT attack. However, the methods of obfuscating one-
point functions may suffer from some issues. For the in-cone
one-point function, its size, i.e., the number of inputs, may not
be large enough for providing sufficient security. For the out-of-
cone one-point function, the extra logic is introduced on a large
scale. As a result, a re-synthesis process is needed to simplify
and hide the added structure, which could affect the original
design essence. Moreover, the remove-all DIP problem affects
both of their security.

Table II shows the benchmarks, in which the size of the
largest AND/OR-tree identified by the tree detection method [9]

TABLE II: Sizes of largest AND/OR-trees and numbers of remove-all DIPs.

Circuit AND/OR-tree detection [9] #Remove-all DIPsTree input size
c1355 9 172
c5315 18 495616

ex5 9 14
i7 4 32
i9 15 416

apex2 9 109080
i4 7 18597788326912
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(a) Example of an locked circuit.

F obfuscated

x1x2x3 F k̂1 k̂2 k̂3 k̂4
în1 000 0 0 0 0 1
în2 001 0 0 0 0 1
în3 010 0 0 0 1 0
în4 011 1 1 1 1 1
în5 100 0 0 1 0 0
în6 101 0 0 1 0 0
în7 110 1 1 0 0 0
în8 111 1 1 1 1 1

(b) Truth table of the locked circuit.

Fig. 1: Example of the equivalence class of an locked circuit.

is less than 20. For these benchmarks, encrypting the AND/OR-
tree could not provide sufficient resistance against SAT attack.
Additionally, if an internal node of the tree has multiple fanout,
the resistance would be greatly reduced, since the key effect can
be propagated through the fanout.

Table II also shows the numbers of remove-all DIPs for the
obfuscated largest AND/OR-tree. For some benchmarks, there
exist a large number of remove-all DIPs, indicating that SAT
attack may have a high probability of finding a remove-all DIP
to prune all error keys in one iteration. Note that since a tree
input may not be primary input (PI), the number of remove-
all DIPs could be larger than the number of all possible input
combinations of the tree inputs.

The mentioned issues motivate us to develop a new locking
method for constructing an obfuscated tree, which can expand
the in-cone AND-tree and reduce the impact of remove-all DIPs
to improve security.

IV. OBFUSCATED AND-TREE CONSTRUCTION

In this section, we first introduce three basic definitions.
Next, we present some propositions on the properties of an
obfuscated AND-tree. Then, we discuss how to improve an
obfuscated AND-tree to resist SAT attack. Finally, we present
the proposed method.
A. Basic Definitions

Definition 1. (Error key set). Given a Boolean function F and
its obfuscated function F obfuscated, the error key set of an input
pattern în is defined as:

EK în = {k̂e|F obfuscated(în, k̂e) ̸= F (în)}.

Definition 2. (Equivalence class of error key sets). We say that
two input patterns în1 and în2 are in the same equivalence
class of error key sets, if and only if their error key sets are
equivalent, i.e., EK în1

= EK în2
.

Definition 3. (Number of members in an equivalence class).
Let [în] denote the equivalence class of error key sets with în
as one of the members. The number of members in [în], denoted
as MEK([în]), is the cardinality of [în].

Fig. 1(b) shows the truth table of the locked circuit in Fig.
1(a). în1 and în2 are in the same equivalent class, and în5 and
în6 are in the same equivalence class.
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Fig. 2: Effect of an obfuscated AND-tree T obfuscated operating with a
function G.

F obfuscated

x1x2x3x4 F k̂1 k̂2 k̂3 k̂4
în1 0000 0 0 0 0 1
în2 0001 0 0 0 0 1
în3 0010 0 0 0 0 1
în4 0011 1 1 1 1 1
în5 0100 0 0 0 1 0
în6 0101 0 0 0 1 0
în7 0110 0 0 0 1 0
în8 0111 1 1 1 1 1
în9 1000 0 0 1 0 0
în10 1001 0 0 1 0 0
în11 1010 0 0 1 0 0
în12 1011 1 1 1 1 1
în13 1100 1 1 0 0 0
în14 1101 1 1 0 0 0
în15 1110 1 1 0 0 0
în16 1111 1 1 1 1 1

(a) Truth table of Fig. 2(a).

F obfuscated

x1x2x3 F k̂1 k̂2 k̂3 k̂4
în1 000 0 0 0 0 1
în2 001 0 0 0 0 1
în3 010 0 0 0 1 0
în4 011 1 1 1 1 1
în5 100 0 0 1 0 0
în6 101 0 0 1 0 0
în7 110 1 1 0 0 0
în8 111 1 1 1 1 1

(b) Truth table of Fig. 2(b).

Fig. 3: Truth tables of the circuits in Fig. 2.

Note that for an obfuscated function, the number of equiv-
alence classes is the worst-case complexity and the number of
members in an equivalence class of remove-all DIPs represents
the number of remove-all DIPs. Thus, our encryption objective
is to increase the number of equivalence classes and minimize
the number of members in the equivalence class of remove-all
DIPs.

B. Properties of an Obfuscated AND-Tree
In general, an obfuscated AND-tree could be randomly

embedded in a circuit. In addition to the correlation between
the tree inputs and the PIs, whether the effect of an obfuscated
AND-tree can be propagated to a primary output (PO) affects
the resistance to SAT attack as well. To analyze the security
of an obfuscated AND-tree, we first present the following
proposition.

Proposition 1. For an n-input obfuscated AND-tree
T obfuscated, there exist 2n equivalence classes of error
key sets.

Proof: Omitted. ■
For example, the 2-input obfuscated AND-tree shown in

Table I has 4 equivalence classes.
Next, let us consider the effect of an obfuscated AND-tree

operating with a subfunction G in a circuit, where G is an
arbitrary function ORed with the obfuscated AND-tree. There
should be another case, in which G and the obfuscated AND-
tree are ANDed. However, in the proposed method, we can
transform the circuit so that only OR gates are left on the path
from the obfuscated AND-tree toward the PO.

For ease of explanation, in the following example, we assume
that the obfuscated AND-tree T obfuscated has 2 inputs, the
correct key is k̂1 = 00, and G is an AND gate. Fig. 2 shows
different combinations of T obfuscated and G. They are different
in whether the support sets of G and T obfuscated are disjoint
or not.

The truth tables of the two circuits in Fig. 2 are shown
in Table 3. First, let us consider the circuit in Fig. 2(a),
in which the support sets are disjoint. T obfuscated can be
propagated to the PO under the input patterns with (x3, x4) =
{(0, 0), (0, 1), (1, 0)}. According to the truth table in Fig. 3(a),
the obfuscated circuit F obfuscated still has 4 equivalence classes
and each class has 3 members. Next, for the circuit in Fig.
2(b), in which the support sets are non-disjoint, input patterns
(x2, x3) = {(0, 0), (0, 1), (1, 0)} sets input of OR gate to non-
controlling value. Thus, the obfuscated tree T obfuscated can be
propagated to the output. The truth table in Fig. 3(b) shows
that although F obfuscated still has 4 equivalence classes, there
is only one remove-all DIP.

The example shows that the number of remove-all DIPs is
affected by whether the support sets of T obfuscated and G are
disjoint or not. Based on the above observation, we present
the following proposition. Here, let ON(F ) and OFF (F )
denote the ON-set and the OFF-set of a Boolean function F ,
respectively.

Proposition 2. Suppose that an obfuscated AND-tree
T obfuscated is embedded in a circuit F obfuscated, where
F obfuscated = T obfuscated ∨ G, and G is an arbitrary
function. Then, for F obfuscated, given a key k̂ which makes
T obfuscated(k̂, ˆini) = 1 for all ˆini in an equivalence class
[în], [în] can be computed with the following equation.

[în] = ON(T obfuscated(k̂)) ∩OFF (G). (1)

Proof: Omitted. ■
k̂ is either a correct key or an error key. If k̂

is the correct key, [în] is also the remove-all DIP
set. For example, in Fig. 2(b), ON(T obfuscated(k̂1)) is
{110, 111} and OFF (G) is {000, 001, 010, 100, 101, 110}.
ON(T obfuscated(k̂1)) ∩ OFF (G) is {110}, which is the
equivalence class of remove-all DIPs, as shown in Fig-
ure 3(b). Furthermore, ON(T obfuscated(k4)) is {000, 001}.
ON(T obfuscated(k̂4))∩OFF (G) is {000, 001}. Either 000 or
001 can be a DIP to prune k̂4.

The following proposition states a method to measure the
number of remove-all DIPs for F obfuscated.

Proposition 3. Given an obfuscated AND-tree T obfuscated

embedded in a circuit F obfuscated, where F obfuscated =
T obfuscated ∨ G and G is an arbitrary function, the number
of remove-all DIPs for F obfuscated is equivalent to the number
of test patterns that can detect the stuck-at-0 fault at the output
of T obfuscated(k̂c), where k̂c is the correct key.

Proof: Omitted. ■
We note that previous tree-based encryption methods may

have poor resistance to SAT attack due to the small size of the
in-cone AND-tree and the large number of remove-all DIPs.
Thus, we propose an operation, called split-compensate, to
expand the AND-tree and reduce the number of remove-all
DIPs with extra variables.

Definition 4. (split-compensate). Given an AND-tree T embed-
ded in a circuit F , where F = T ∨ G and G is an arbitrary
function, the operation split performs Shannon’s expansion on
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Fig. 5: External variables and internal variables.

an extra variable xex to T and selects one product term for
encryption, and the operation compensate inserts the other
product terms after the split operation into F to recover the
function.

Fig. 4 shows an example. We add Xex as an extra variable
to T with Shannon’s expansion, T = xex · T + xex

′ · T =
xexx1x2 + xex

′
x1x2. Then, we encrypt the product term

(xexx1x2) to be the obfuscated AND-tree and insert the product
term (xex

′
x1x2) to recover the function. Note that the split-

compensate operation can be repeatedly conducted to expand
T obfuscated by adding more extra variables.

We can use extra variables to enlarge the obfuscated AND-
tree. However, the extra variables may correlate with G. We
classify the variables into external variables and internal vari-
ables, and analyze their effect in the following subsections.

C. Expanding Obfuscated AND-Tree with External Variables

Definition 5. (External variable). For an AND-tree T , the
external variable set of T , denoted as external(T ), is defined
as:

external(T ) = I − SUP (Oio).
where I denotes the PI set, Oio denotes the set of POs in the
transitive fanout cone of T , and SUP (Oio) denotes the support
set of Oio.

Fig. 5 shows an example of external variables, where
external(T ) are highlighted with the orange color.

The input size of an obfuscated AND-tree can be increased
by q after introducing q external variables. When we introduce
q external variables through the split-compensate operation, we
insert a new circuit structure, which can be seen as G, into
Fobfuscated for compensating the function. As discussed in
the examples in Fig. 2, G may affect the effect propagation
of the obfuscated AND-tree. The following proposition states
the number of equivalence classes we can obtain, when we
introduce q external variables through the split-compensate
operation.

Proposition 4. Given an AND-tree T embedded in a circuit F ,
where F = T∨G and G is an arbitrary function. Suppose that if
we encrypt T directly without the split-compensate operation,

G
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(a) Original obfuscated circuit:
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(b) F obfuscated after split-compensate with
internal variable x4.

Fig. 6: Example of split-compensate with the internal variable x4.
F obfuscated

x1x2x3x4 F k̂1 k̂2 k̂3 k̂4
în1 0000 0 0 0 0 1
în2 0001 0 0 0 0 1
în3 0010 0 0 0 0 1
în4 0011 1 1 1 1 1
în5 0100 0 0 0 1 0
în6 0101 0 0 0 1 0
în7 0110 0 0 0 1 0
în8 0111 1 1 1 1 1
în9 1000 0 0 1 0 0
în10 1001 0 0 1 0 0
în11 1010 0 0 1 0 0
în12 1011 1 1 1 1 1
în13 1100 1 1 0 0 0
în14 1101 1 1 0 0 0
în15 1110 1 1 0 0 0
în16 1111 1 1 1 1 1

(a) Truth table of Figure 6(a).

F obfuscated

x1x2x3x4 F k̂1 k̂2 k̂3 k̂4 k̂5 k̂6 k̂7 k̂8
în1 0000 0 0 0 0 0 0 0 0 1
în2 0001 0 0 0 0 0 0 0 1 0
în3 0010 0 0 0 0 0 0 0 0 1
în4 0011 1 1 1 1 1 1 1 1 1
în5 0100 0 0 0 0 0 0 1 0 0
în6 0101 0 0 0 0 0 1 0 0 0
în7 0110 0 0 0 0 0 0 1 0 0
în8 0111 1 1 1 1 1 1 1 1 1
în9 1000 0 0 0 0 1 0 0 0 0
în10 1001 0 0 0 1 0 0 0 0 0
în11 1010 0 0 0 0 1 0 0 0 0
în12 1011 1 1 1 1 1 1 1 1 1
în13 1100 1 1 1 1 1 1 1 1 1
în14 1101 1 1 0 0 0 0 0 0 0
în15 1110 1 1 1 1 1 1 1 1 1
în16 1111 1 1 1 1 1 1 1 1 1

(b) Truth table of Figure 6(b).

Fig. 7: Truth tables of split-compensate with internal variable x4.
the number of equivalence classes of F obfuscated is constG
less than that of T obfuscated due to the influence of G. Then,
when we perform the split-compensate operation to encrypt T
with q external variables, the number of equivalence classes
of F obfuscated has 2n+q − 2q − constG · 2q + 1 equivalence
classes.

Proof: Omitted. ■
Proposition 4 shows that the number of equivalence classes

increases exponentially with respect to the number of intro-
duced external variables. Thus, it is effective to increase the
number of equivalence classes by introducing external variables
with the split-compensate operation.

D. Expanding Obfuscated AND-Tree with Internal Variables

Next, let us discuss how to mitigate the remove-all DIP issue.
Our objective is to minimize the members of the equivalence
class of remove-all DIPs. Proposition 2 states that when the
support sets of T obfuscated and G are non-disjoint, the members
of the equivalence classes are affected by the size of OFF (G).
When we introduce the compensation function, which can be
seen as G, we can minimize the number of remove-all DIPs
by manipulating the compensation function.

Definition 6. (Internal variable). For an AND-tree T , the
internal variable set of T , denoted as internal(T ), is defined
as:

internal(T ) = SUP (Oio)

where Oio denotes the set of POs in the transitive fanout cone
of T , and SUP (Oio) denotes the support set of Oio.

Figure 5 shows an example of internal variables, where
internal(T ) are highlighted by the purple color.

Proposition 5. Given an AND-tree T embedded in a circuit
F , where F = T ∨ G and G is an arbitrary function, if we
perform the split-compensate operation to T by adding internal
variables, the number of remove-all DIPs can be reduced.
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Proof: Omitted. ■
Fig. 6 shows an example of using an internal variable to

effectively reduce the number of remove-all DIPs. Fig. 6(a)
and (b) show the original obfuscated circuit and the resultant
obfuscated circuit after we perform the split-compensate opera-
tion with the internal variable x4, respectively. Their truth tables
are shown in Fig. 7(a) and (b). As you can see, the number of
remove-all DIPs is reduced from 3 to 1. Thus, it is effective to
reduce the number of remove-all DIPs by introducing internal
variables with the split-compensate operation.

E. Overall Flow
Since an AND-tree corresponds to a product term, the most

straightforward method to find/construct an AND-tree is to find
the a product term. Given a function to be obfuscated, we first
collapse it into a 2-level sum-of-product (SOP) form. Then, we
select one product term as the AND-tree and encrypt it with
the split-compensate operation.

The overall flow of the proposed method is shown in Fig.
8. In the first step, PO Selection, we select the PO function
with the lowest probability to be 1. In the second step, SOP
Transformation, we use the Berkeley ABC tool [17] to col-
lapse the selected PO function to the SOP form. In the third
step, AND-Tree Selection, we find the largest AND-Tree with
the minimum number of remove-all DIPs for encryption.

Next, we compute the input size of the selected AND-
tree. If the tree input size is smaller than the number of key
inputs specified by the user, we entrance the fourth step, Split-
Compensate by Adding Internal & External Variables.

Then, in the fifth step, PO Cone Optimization, we optimize
the selected PO function except the AND tree with the Berkeley
ABC tool, Finally, we encrypt the AND tree with randomly
selected XOR/XNOR key gates to obtain the obfuscated netlist.

In the following subsection, we only explain the step of Split-
Compensate by Adding Internal & External Variables in
details, since the other steps are more straightforward.

F. Split-Compensate by Adding Internal and External Variables

Fig. 9 shows the flow of Split-Compensate by Adding In-
ternal and External Variables. First, we compute the number
of remove-all DIPs of the selected AND-tree T obfuscated by
computing the number of test patterns that can detect the stuck-
at-0 fault at the output of T obfuscated. Then, we check whether
the number of remove-all DIPs is less than a threshold value
specified by the user. If not, internal variables are selected to
perform the split-compensate operation to reduce the number
of remove-all DIPs until the desired number is met.

Based on Proposition 3, The method of selecting internal
variables is as follows: First, we collect all the test patterns,
denoted as {tp}, that can detect the stuck-at-0 fault at the output
of T obfuscated by the ATPG tool. Next, for each variable xi in

YES
Low percentage of
Remove-all DIP?

Tselect, Desired percentage
of Remove-all DIP &

NumKey

NO

Internal variable insertion

NO

External variable insertion

YES

NumKey is reached?

Compute the size of
Remove-all DIP

Oselect 

Start

Fig. 9: Flow of the split-compensate by adding internal & external variables.
TABLE III: Test patterns generated by ATPG.

x1 x2 x3 x4 x5 x6 x7 x8

t̂1 1 1 0 0 0 X 0 X
t̂2 1 1 0 0 1 0 0 X
t̂3 1 1 0 0 0 X 1 0
t̂4 1 1 0 0 1 0 1 0

{tp}, we compute the number of test patterns with xi = v (v is
0 or 1), denoted as #tp(xi, v). Then, we select the variable xi

with the smallest non-zero #tp(xi, v) as the internal variable
xselect for performing the split-compensate operation. Finally,
xselect with its selected phase v is added to T obfuscated and
the test patterns with xselect = v′ are removed from {tp}.

The reason to select the variable and the phase with a smaller
test pattern count is that we would like to eliminate more test
patterns from {tp} in one iteration, i.e., more remove-all DIPs.
Since we use xselect with the phase v to expand the tree, the
patterns with xselect = v′ are not test patterns anymore due
to the phase conflict. Furthermore, we choose the non-zero
#tp(xi, v) to avoid eliminating all the remove-all DIPs for
defending against Removal attack. When we keep one remove-
all DIP, it indicates that T obfuscated has one minterm of the
selected PO function, which is not covered by the compensation
function. An attacker who directly removes T obfuscated based
on Removal attack cannot recover the minterm.

The internal variable selection is demonstrated as follows:
Suppose that the test patterns generated by the ATPG tool
are listed in Table III, and x5, x6, x7 and x8 are the internal
variables to be selected. In the first iteration, x7 = 1 is selected,
and t̂1 and t̂2 are eliminated. Next, x6 = 0 is selected and the
remove-all DIP count is reduced to 1.

When the remove-all DIP count is less than the threshold
value, we then repeatedly select a random external variable
and add it to T obfuscated with the split-compensate operation,
until the desired key size is reached.

V. EXPERIMENTAL RESULTS

In the experiments, we evaluate the effectiveness of the
proposed method to resist SAT attack. We use the Berkeley
ABC tool [17] for synthesis and the Atalanta ATPG tool [18]
to generate test patterns. SAT Attack is adopted from [3], and
we set two time limits of 3 hours and 5 hours to SAT attack. All
the experiments were conducted on a CentOS machine with two
Intel Xeon(R) Gold 6226R 2.90GHz CPUs and 128G memory.
The benchmarks are chosen from ISCAS’85 [15] and MCNC
benchmarks [16].
A. Effectiveness of SOP Transformation

We conduct the SOP Transformation to find the largest AND-
tree in each benchmark circuit and compare the results to
that found by the tree detection method [9]. The experimental
results are shown in Table IV. Columns 2 and 3 show the
statistics of the benchmarks. Columns 4 and 5 show the sizes of



TABLE IV: Sizes of the largest AND/OR-trees.

Circuit #PI/#PO #Gate Input size of largest AND/OR-tree #Support PI of tree [9][9] SOP Transformation
c1355 41/32 546 9 - 41
c1908 33/25 880 27 30 33
c2670 233/140 1193 34 40 108
c3540 50/22 1669 24 29 35
c5315 178/123 2307 18 26 29
c7552 207/108 3512 35 22 94

ex5 8/63 1055 9 8 8
i7 199/67 1315 4 4 6
k2 46/45 1815 175 20 41
i9 88/63 1035 15 8 10

apex2 39/3 610 9 21 11
i4 192/6 338 7 16 47

des 256 245 31 17 13
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表格 2

Worst-case 
Iteration

5 31

6 54

7 100

8 200

9 400

10 800

11 1600

12 3200

13 6400

14 12800

W
or

st
-c

as
e 

Ite
ra

tio
n

0

3500

7000

10500

14000

Key input

5 6 7 8 9 10 11 12 13 14

Worst-case Iteration

i9

1
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Fig. 10: Effectiveness of extra variables.

the largest AND/OR-trees found by the tree detection method
and the SOP transformation, respectively. For 6 out of 13
benchmarks, the tree sizes found by the SOP Transformation
are larger than that found by the tree detection method. How-
ever, for c1355, the SOP Transformation cannot successfully
collapse the selected PO function into the SOP form, since
the benchmark contains a lot of arithmetic logic. For the ex5
and k2 benchmarks, the input counts of the AND/OR-trees
found by the tree detection method are even larger than the
PI counts. It indicates that the inputs of the AND/OR-trees are
highly correlated, and thus the security of the trees could be
over-estimated. As you can see in the last column, for the k2
benchmark, the support PI count of the tree found by the tree
detection method is much smaller than the tree input count. As
for the SOP Transformation, all the inputs of the found trees
are PIs. Encrypting the trees could lead to better security.

B. Effectiveness of Extra Variables

We conduct the experiment on the i9 benchmark to evaluate
the effectiveness of inserting internal variables to minimize
the number of remove-all DIPs. Fig. 10(a) shows the relation
between the number of inserted internal variables and the
number of remove-all DIPs. When the number of key inputs
increases from 5 to 14 by adding internal variables, the number
of remove-all DIPs dramatically drops. Furthermore, Fig. 10(b)
shows the effectiveness of adding external variables to expand
the tree size.

C. Effectiveness of Anti-SAT Attack

In this experiment, we use the proposed method to encrypt
the benchmarks and apply SAT attack to decrypt them. Table V
shows the experimental results. Column 1 lists the benchmarks.
Column 2 shows the numbers of inserted key inputs. Column
3 shows the numbers of iterations spent by SAT Attack when
it reaches the time limit or ends early. Columns 4 and 5 show
the SAT Attack execution time under the 3- and 5-hour limits,
respectively, ”TLE” indicates that the benchmark cannot be

TABLE V: Resilience against SAT attack with 32 key bits.

Circuit KI Our method
IT T3h(s) T5h(s) Area (%)

i4 32 >35732 TLE TLE 31.952
i9 32 23025 TLE 15554.1 25.507
i7 32 5033 811.131 811.131 10.494

des 32 >12238 TLE TLE 3.661
apex2 32 >20270 TLE TLE 234.262
c5315 32 >11316 TLE TLE 181.554
c7552 32 >11784 TLE TLE 91.625

successfully decrypted by SAT attack within the time limit.
Note that the i9 and i7 benchmarks are cracked in a relatively
short time, which is due to the fact that we retain one remove-
all DIP and the probability of finding the DIP is related to
the heuristic of the SAT Solver. Column 6 represents the area
overhead. Note that the area overhead for apex2, c5315 and
c7552 is significantly large. It is mainly contributed by the
SOP transformation. Functions of c5315 and c7552 are 9-bit
ALU and 32-bit adder/comparator, respectively. For Apex2,
collapsing one of PO cones results in 276 product terms.

VI. CONCLUSIONS
In this paper, we present a new method for constructing

obfuscated trees. We first use the SOP Transformation to
find the largest AND-tree in the circuit and then insert extra
variables by the split-compensate operation to further expand
the AND-tree and reduce the number of remove-all DIPs.
The experimental results show that the proposed method can
find larger AND-trees than a previous tree detection method
for most benchmarks. Additionally, the constructed obfuscated
trees can effectively resist SAT attack.
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