
Received 17 October 2022, accepted 2 November 2022, date of publication 14 November 2022,
date of current version 18 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3221764

A Heuristic Boolean NPN Equivalent
Matching Verification Method Based
on Shannon Decomposition
JULING ZHANG 1, WENQIANG GUO1, GUOWU YANG 2, (Member, IEEE),
YIXIN ZHU 1, AND XIAOYI LV3
1School of Cyberspace Security, Xinjiang University of Finance and Economics, Urumqi 830012, China
2Big Data Research Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
3School of Software, Xinjiang University, Urumqi 830000, China

Corresponding author: Juling Zhang (zjlgj@163.com)

This work was supported in part by the Natural Science Foundation Project of the Xinjiang Autonomous Region under Grant 2019D01A27;
in part by the School-Level Scientific Research Fund Project of Xinjiang University of Finance and Economics under Grant 2019XYB005;
and in part by Sichuan Regional Innovation Cooperation Project 2020YFQ0018.

ABSTRACT In this paper, we describe a new verification method to accelerate the input negation and/or
input permutation and/or output negation (NPN) Boolean matching for a single-output completely specified
Boolean function. Through research on the Boolean Shannon decomposition binary tree, we prove that the
signature vectors of the left child node and right child node are complementary relative to the signature
vector of the parent node. We introduce an independent variable check to speed up the detection of candidate
transformation. The proposed approach utilises this complementarity, a symmetry check, an independent
variable check and a phase collision check, which can quickly verify whether the candidate transformation
obtained in the detection of the candidate transformation of the Boolean matching process is accurate.
We perform experiments on two types of Boolean function sets. One type consists of Boolean functions
from randomly generated circuits. The other is exported from the Microelectronics Center of North Carolina
(MCNC) benchmark. The experimental results show that the average runtime of our algorithm is 68.8%
faster than those in Zhang et al. (2019) on two randomly generated circuits and 51% faster than those in
Zhang et al. (2019) when tested on the MCNC benchmark circuit set. Therefore, the experimental results
demonstrate the effectiveness of the proposed method.

INDEX TERMS Boolean matching, NPN equivalence, Shannon expansion, Shannon decomposition binary
tree, signature vector.

I. INTRODUCTION
Since the 1930s, scholars have realised that Boolean match-
ing and Boolean classification play very important roles
in the analysis of switching circuits and started to study
how to construct a ‘‘good’’ Boolean network. At present,
Boolean matching and Boolean classification are usually
applied to industrial applications such as cell-library bind-
ing, technology mapping, engineering, synthesis, and circuit
optimisation [2], [3], [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Abdallah Kassem .

Boolean equivalence classification divides Boolean
functions into several equivalence classes. Any two Boolean
functions in an equivalent class can realise each other. In cir-
cuit optimisation, the circuit with the lowest cost can be
selected to replace other Boolean functions [5], [6], [7], [8].
Reference [5] used the group algebra method to complete
the input negation and/or input permutation (NP)-equivalent
classification and input negation and/or input permutation
and/or output negation (NPN)-equivalent classification of
Boolean functions with 10 variables. Based on the canon-
ical form and by exploiting symmetries under different
phase assignments and higher-order symmetries of Boolean

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 120369

https://orcid.org/0000-0003-4968-3896
https://orcid.org/0000-0002-5133-0320
https://orcid.org/0000-0002-0888-8222
https://orcid.org/0000-0003-4724-7628

J. Zhang et al.: Heuristic Boolean NPN Equivalent Matching Verification Method Based on Shannon Decomposition

functions, Reference [6] proposed a Boolean NPN-equivalent
classification algorithm. A hierarchical method introduced in
Reference [7] enables a rapid exact NPN classification for
functions up to 10 inputs, and its speed is 3.7 times faster
than a state-of-the-art nonhierarchical method. Reference [8]
studied a newmethod for the affine equivalence classification
for Boolean functions with no more than R(7,2).

We study the Boolean NPN-equivalent matching problem.
When there is an NPN transformation τ that can transform
Boolean function f into Boolean function g/g, we say that
the functions are NPN equivalent. For an n-variable Boolean
function, there are n!2n+1 NPN transformations [9]. With the
increase in the number of variables, the number of NPN trans-
formations exponentially increases. Therefore, Boolean NPN
equivalence classification and matching are nondeterministic
polynomial time (NP)-hard problems.

Currently, NPN-equivalent matching methods based on
the canonical form, pairwise comparison and Boolean
satisfiability (SAT) are commonly used. Different meth-
ods adopt various strategies to resolve the NPN equiva-
lence matching problem. In the canonical-based Boolean
matching algorithm, two equivalent Boolean functions have
identical canonical forms. Therefore, the key issue of the
canonical-based Boolean matching algorithm is finding the
canonical form [9], [10], [11], [12], [13], [14], [15], [16].
Pairwise comparison algorithms utilise signature differenti-
ated variables and search the variable correspondence relation
between two Boolean functions [1], [17], [18], [19], [20].
Therefore, the most important consideration is the choice
and use of signatures. The SAT-based Boolean matching
method is often applied to equivalent matching for technol-
ogy mapping of field-programmable gate arrays (FPGAs).
For a programmable circuit g and a Boolean function f ,
f can be realised by circuit g if and only if there is a set of
configurations in the programmable bits of the circuit g that
satisfy f ≡ g under all input and output conditions [21], [22],
[23], [24], [25]. The difficulty of the SAT-based method is
reducing the search space.

Based on the study of Shannon expansion, we construct
a Shannon decomposition binary tree for the Boolean NPN
equivalent matching process. Each node of the Shannon
decomposition binary tree is a Shannon cofactor. We research
the relationship between the cofactor signature of parents’
nodes and that of left and right children’s nodes, prove that
the signature vectors of the left child node and right child
node are complementary relative to the signature vector of the
parent node, and find the relationship between the cofactor
signatures of the left and right child nodes. We also intro-
duce independent variable detection, which can speed up
candidate transformation detection. According to these two
relationships, variable symmetry and independent variables,
this heuristic verification method is proposed. The pairwise
comparison matching algorithm first finds the variable cor-
respondence relationship between two Boolean functions,
i.e., obtains a candidate transformation τ . Then, it computes
f (τX) and determines f (τX) = g(X)/g(X) to verify whether

τ is correct or not. Our verification algorithm is faster than
the traditional approach, which speeds up Boolean matching.

The remainder of this paper is organized as follows.
In Section II, the related research on Boolean matching is
reviewed. In Section III, we introduce the terminologies and
key definitions and retrospectively review the techniques of
the algorithm in Reference [1]. Through proofs and examples,
Section IV presents our new verification method based on
the Boolean Shannon decomposition binary tree. Section V
elaborates on the Boolean NPN equivalent matching verifi-
cation method based on Shannon decomposition. Section VI
demonstrates the effectiveness of our algorithm by presenting
experimental results. We summarise our work and outline
future work in Section VII.

II. RELATED WORKS
The ultimate goal of almost all equivalent matching is to
find the transformation between two equivalent Boolean
functions. Canonical-based NPN Boolean matching uses
the property that two NPN equivalent Boolean functions
have identical canonical forms. It is most commonly used
to solve the problem of Boolean matching in cell-library
binding. Reference [9] proposed a semicanonical form for
the NPN Boolean matching algorithm and applied it to
Boolean functions of 6-16 inputs, but its runtime degrades
when the number of input variables is 18-22. The author of
Reference [10] proposed a compact signature vector that
is composed of general signatures of 0th, 1st . . . , nth. After
researching the Shannon cofactor operation, Reference [11]
introduced a Boolean difference signature into the general
signature vector of Reference [10], which formed a dif-
ference and cofactor (DC) signature vector. The use of a
DC signature vector reduced the search space and sub-
stantially accelerated the calculation of the canonical form.
Reference [12] presented an NP Boolean matching method
that used a table look-up and a tree-based breadth-first search
strategy to compute the NP representative for a given Boolean
function. In Reference [13], the authors proposed a new
canonical form that used the spectral method. They identified
a linear transformation that could speed up Boolean match-
ing. The authors of Reference [14] and Reference [15] stud-
ied constructing minimal representations of multiple-output
Boolean functions and their complexity. A co-designing
canonical form is presented in Reference [16], the NPN
classification algorithm of which can exactly classify any
practical Boolean function up to 16 inputs in reasonable
time. References [10], [13] and [16] are only experiments on
Boolean functions with no more than 20 inputs. The analysis
and utilisation of the Boolean difference signature are not
sufficient in Reference [11].

Reference [1] researched pairwise NPN Boolean match-
ing and presented a structural signature vector that could
efficiently eliminate incorrect variable mappings when a
candidate NP transformation is detected. Symmetry detec-
tion, variable grouping and phase collision detection were
proposed, which greatly reduced the search space and

120370 VOLUME 10, 2022

J. Zhang et al.: Heuristic Boolean NPN Equivalent Matching Verification Method Based on Shannon Decomposition

accelerated the matching speed. The authors of
Reference [17] researched NPN Boolean matching in the
presence of incompletely specified functions. They addressed
a pairwise matching algorithm based on the 1st and
2nd general signatures. A fast pairwise Boolean matching
algorithm was proposed in Reference [18], which made full
use of the cofactor signature, Boolean difference signature
and symmetric variables. References [19] and [20] both used
signatures to reduce the complexity of pairwise comparisons.
There are no more than 16 variables of Boolean matching
in References [17], [19] and [20], and the comparisons with
previous algorithms are not comprehensive.

Reference [21] proposed an SAT-based Boolean matching
algorithm that integrates simulation and SAT techniques.
Reference [22] utilised symmetry to overcome the bottle-
neck of the SAT-based Boolean matching method. Their
approaches greatly reduced the scale of the problem and
improved the performance of SAT-based Boolean matching
for FPGAs. Reference [23] improved the SAT-based Boolean
matching method for look-up table (LUT)-based circuits by
using one-hot encoding and counterexample-guided abstrac-
tion refinement (CEGAR).

Other methods have been utilised to resolve Boolean
matching. Reference [24] introduced the Bloom filter to
the SAT-based Boolean matching method to solve insuf-
ficient storage space. The authors of Reference [25] and
Reference [26] used incremental and dynamic learning
approaches to solve the Boolean matching problem, respec-
tively. Through conflict-driven dynamic learning and abstrac-
tion, Reference [27] effectively pruned infeasible matching
solutions. Reference [28] created a treelike logic network
that represented the decomposition properties of Boolean
functions and implemented a tree-based Boolean match-
ing algorithm. Reference [29] researched a dynamic data
structure that efficiently expresses Boolean functions, and
Reference [30] proposed a negation and permutation of
outputs and negation and permutation of inputs (NPNP)-
equivalent matching algorithm for large-scale Boolean
functions.

III. PRELIMINARIES
A. BOOLEAN FUNCTION AND NPN EQUIVALENT
Let X be a Boolean vector (x0, x1, · · · , xn−1); the Boolean
function f (X) can be expressed by f (X) : Bn → B. Here,
f (X) is a single-output and completely specified Boolean
function.

The commonly used Boolean function representation
methods are the truth table and minterm representations.
The truth table method makes each combination of Boolean
function inputs and its output into a table. Each set of inputs in
the truth table that makes output 1 is called a minterm. In the
minterm representation, a Boolean function is the result of the
‘‘or’’ operation on all minterms. A simplified truth table, i.e.,
a truth table that contains only minterms, is used to represent
Boolean functions in many research work [12]. Its purpose

is to facilitate the calculation of the signature. For a Boolean
function f = x0x2 + x0x2 + x0x1x2 + x0x1x2, the left side
of Fig. 1 is its truth table, and the right side is its simplified
truth table. Binary decision diagrams (BDDs) are compressed
representations of Boolean functions. Since BDD is the most
efficient representation format for Boolean functions and is
widely adopted both in industry and in research works [31],
our algorithm uses BDD to represent Boolean functions.
Definition 1 (P-Transformation): Perform a permutation

transformation π on vector X : Xπ (x0, x1, · · · , xn) = (xπ (0),
xπ (1), · · · , xπ (n−1)),π (i) = j, where i, j ∈ {0, 1, · · · , n− 1}.
Definition 2 (N-Transformation): Perform a negation

transformation ϕ on a vector X . We have the follow-
ing: Xϕ(x0, x1, · · · , xn) = (xϕ(0)0 , xϕ(1)1 , · · · , xϕ(n−1)n−1). Here,
x
ϕ(i)
i = xi when ϕ(i) = 1, and x

ϕ(i)
i = x i when ϕ(i) = 0.

Definition 3 (NP-Transformation):When a negation trans-
formation ϕ followed by a permutation transformation
π acts on X , we have an NP transformation Xϕπ =

(x
ϕ(0)
π(0) , x

ϕ(1)
π(1) , · · · , x

ϕ(n−1)
π(n−1)). In this paper, theNP-transformation

is denoted by T .
Definition 4 (NPN Equivalent): Boolean function f (X)

is NPN equivalent to Boolean function g(X) if and only if
there exists an NP-transformation T that makes the equation
f (TX) = g(X) or f (TX) = g(x) true.
NPN equivalence of Boolean functions f (X) and g(X) is

denoted by f (X) ≡ g(X).
Variable mapping involves the correspondence relation

between two variables of two Boolean functions [1]. An NP
transformation can be denoted by a variable mapping set as
follows: T = {x

αi0
i0
→ x

pj0
j0
, x
αi1
i1
→ x

pj1
j1
, · · · , x

αi(n−1)
i(n−1)

→

x
pj(n−1)
j(n−1)

}.
Example 1: Let f (X) = x0x1x2+x0x1x2, g(X) = x0x1x2+

x0x1x2. There is an NP transformation T = {x0→ x1, x1→
x2, x2 → x0}, which satisfies f (TX) = g(X). Therefore, the
Boolean function f (X) is NPN equivalent to g(X).
Lemma 1: Shannon expansion constitutes the identity

f = xifxi + x ifxi [1].
Boolean functions fxi and fxi of the Shannon expansion are

called cofactors, and fxi = f [xi ← 1], fxi = f [xi ← 0].
Therefore, fxi and fxi are also marked as f1 and f0, respec-
tively [32]. The Shannon expansion is also called Shannon
decomposition, and variable xi is the decomposition vari-
able. Iterative Shannon decomposition continues the Shannon
decomposition of cofactors. Iterative Shannon decomposi-
tion of an n-variable Booelan function will produce multi-
ple cofactors with variables less than n. For example, the
n-variable Boolean function f is decomposed by xi and then
by xj to obtain f = xixjfxixj + xix jfxixj + x ixjfxixj + x ix jfxixj =
xixjf11 + xix jf10 + x ixjf01 + x ix jf00. Here, f11 = f [xi ← 1,
xj ← 1], f10 = f [xi ← 1, xj ← 0], f01 = f [xi ← 0,
xj ← 1], f00 = f [xi ← 0, xj ← 0]. This decomposition
generates four cofactors, i.e., four Boolean functions with
n − 2 variables. An n-variable Boolean function is decom-
posed by k variables, which forms 2k Boolean functions with
n− k variables.

VOLUME 10, 2022 120371

J. Zhang et al.: Heuristic Boolean NPN Equivalent Matching Verification Method Based on Shannon Decomposition

FIGURE 1. Truth table and simplified truth table of Boolean function f .

Normally, a signature is a quantitative property that is
independent of the NP transformation of a Boolean function.
The cofactor signature is the satisfy count of the cofactors
with respect to each variable, which is widely utilised to
address the problem of Boolean matching; it is also called the
general signature [10]. The zeroth-order signature of Boolean
function f (X) is its satisfy count, which is denoted by |f |.
A cube b is the conjunction of k−1 variables, i.e., |b| = k−1.
fb is an (n-k-1)-variable cofactor of the Shannon expansion
for Boolean function f . |fb| is a cofactor signature that is the
number of minterms of fb.
Definition 5 (k-th Signature Value): For a variable xi

of cofactor fb generated by the Shannon decomposition of
n-variable function f and |b| = k − 1, (|fbxi |, |fbxi |) is a
k-th signature value of xi with respect to f . |fbxi | is the satisfy
count of fbxi . |fbxi | is the satisfy count of fbxi .
For example, (|fxi |, |fxi |) is the 1st signature value of xi

with respect to Boolean function f . (|fxjxi |, |fxjxi |) is the
2nd signature value of xi with respect to Boolean function f
when b = xj. In this paper, the 1st signature of xi with respect
to Boolean function f is denoted by (a0i, b0i), and the k-th
signature value of xi with respect to Boolean function f is
denoted by (a(k−1)i, b(k−1)i). If variable xi has been decom-
posed, its k-th signature value is denoted by (−,−).

In Fig. 1, the 1st signature value of x0 is (|fx0 |, |fx0 |),
i.e., (3, 3). (|fx0x1 |, |fx0x1 |) = (1, 2) is the 2nd signature value
of x1 with respect to f when b = x0.
Definition 6 (k-th Signature Vector): For a cube |b| =

k − 1, {(|fbx0 |, |fbx0 |), (|fbx1 |, |fbx1 |), · · · , (|fbxn−1 |, |fbxn−1 |)} is
a k-th signature vector with respect to Boolean function f .
For the Boolean function f in Fig. 1, the 2-nd signature

vector of f is {(−,−), (1, 2), (2, 1)} when b = x0.
Definition 7 (Independent Variable): Variable xi of

Boolean function f is an independent variable when |f ′xi | = 0,
where f ′xi = fxi ⊕ fxi [18].

B. OVERVIEW OF OUR PREVIOUS ALGORITHM
We proposed an NPN Boolean matching algorithm based
on the structural signature and Shannon expansion in

Reference [1]. The structural signature vector of
Reference [1] includes the cofactor signature, symmetry
information and grouping information. The algorithm of
Reference [1] obtained candidate transforms T between
n-variable Boolean functions f and g by iterative Shannon
decomposition. Each candidate transformation T has n vari-
able mappings. To find the correct transformation as early as
possible and reduce the search space, Reference [1] employed
the following strategies.

1) ITERATIVE SHANNON DECOMPOSITION AND SIGNATURE
VECTOR UPDATING
Given two NP equivalent Boolean functions f and g and
an NP transformation T between them, the cofactors gen-
erated by the Shannon decomposition of these two Boolean
functions must be NP equivalent according to T . Therefore,
Reference [1] used the iterative Shannon decomposition
update signature vector and obtained variable mappings
between f and g.

2) PHASE CONFLICT CHECK
The phase relationship between two variables of a correct
variable mapping will not change in the iterative Shannon
decomposition. Using phase conflict can discover incorrect
variable mappings.

3) VARIABLE GROUPING
For two variables of a correct variable mapping, the changes
in their signature value are synchronous in the iterative Shan-
non decomposition process. Variable grouping can identify
the wrong variable mapping.

4) SYMMETRY CHECK
The symmetry variable and nonsymmetry variable may have
identical signature values. However, the variable mapping
between the symmetry variable and the nonsymmetry vari-
able must be faulty. Symmetry detection can avoid this
error.

120372 VOLUME 10, 2022

J. Zhang et al.: Heuristic Boolean NPN Equivalent Matching Verification Method Based on Shannon Decomposition

IV. BOOLEAN SHANNON DECOMPOSITION BINARY TREE
In this section, we research the Boolean Shannon decompo-
sition lemma and propose a new verification method. The
goal of our method is to accelerate the verification speed of
Boolean matching.

A. BOOLEAN SHANNON DECOMPOSITION
For an n-variable Boolean function f , the Shannon decompo-
sition with respect to xi is f = xifxi + x ifxi = xif1 + x if0.
Here, the variable xi is the decomposition variable [1]. The
Shannon decomposition binary tree is shown in Fig. 2.

FIGURE 2. Shannon decomposition binary tree of Boolean function f .

Suppose that the 1st signature vector of f is expressed
as follows: Vf = {(a00, b00), (a01, b01), · · · , (a0i, b0i), · · · ,
(a0(n−1), b0(n−1))}. After Shannon decomposition by
variable xi, let the signature value of the decomposition
variable xi be denoted by (−,−). The 1st signature vector
of decomposed Boolean functions f1 and f0 can be expressed
as follows:

Vf1 = {(a10, b10), (a11, b11), · · · , (a1(i−1), b1(i−1)), (−,−),

(a1(i+1), b1(i+1)), · · · , (a1(n−1), b1(n−1))}

Vf0 = {(a
′

10, b
′

10), (a
′

11, b
′

11), · · · , (a
′

1(i−1), b
′

1(i−1)), (−,−),

(a′1(i+1), b
′

1(i+1)), · · · , (a
′

1(n−1), b
′

1(n−1))}

For f1 and f0, the above signature vectors are their
1st signature vectors. However, these signature vectors are
part of the 2-nd signature vector for f .

When the algorithm in Reference [1] is used to decompose
Boolean functions, the number of decompositions is less than
or equal to n − 1. This decomposition process produces
a decomposition binary tree, which we call the Shannon
decomposition binary tree. Here, we call the subtree on the
left the transformation search subtree and the subtree on
the right the transformation verification subtree, as shown
in Fig. 3.

The signature values of the variables of Boolean function f ′

on each node of the Boolean Shannon decomposition binary
tree satisfy Property 1 below.
Property 1: Suppose that the signature vector of Boolean

function f ′ is {(aα0, bα0), (aα1, bα1), · · · , (aα(n−1), bα(n−1))},
the signature values of the variables other than those that have
been decomposed from f ′ satisfy equation (1) below.

aα0 + bα0 = aα1 + bα1 = · · · = aαi + bαi
= · · · = aα(n−1) + bα(n−1) = |f ′| (1)

Proof: This follows immediately from the definition of
the signature value.

Suppose that the Boolean functions of a parent node, its left
and right child nodes are fp, fl and fr in Fig. 3. The signature
vectors of these three Boolean functions are as follows:

fp = {(ak0, bk0), (ak1, bk1), · · · , (aki, bki), · · · ,

(ak(n−1), bk(n−1))}

fl = {(a(k+1)0, b(k+1)0), (a(k+1)1, b(k+1)1), · · · ,

(a(k+1)i, b(k+1)i), · · · , (a(k+1)(n−1), b(k+1)(n−1))}

fr = {(a′(k+1)0, b
′

(k+1)0), (a
′

(k+1)1, b
′

(k+1)1), · · · ,

(a′(k+1)i, b
′

(k+1)i), · · · , (a
′

(k+1)(n−1), b
′

(k+1)(n−1))}

All signature values of the decomposed variables of
Boolean functions fp, fl and fr are (−,−).
Property 2: In the Shannon decomposition process,

Boolean function fp is decomposed by xi to yield Boolean
functions fl and fr . The signature values of the variables
except those that have been decomposed from these three
Boolean functions satisfy equations (2)-(5) as follows:

a(k+1)0 + b(k+1)0
= a(k+1)1 + b(k+1)1 = · · · = a(k+1)(i−1)
+b(k+1)(i−1) = a(k+1)(i+1) + b(k+1)(i+1) = · · ·

= a(k+1)(n−1) + b(k+1)(n−1) = aki (2)

a′(k+1)0 + b
′

(k+1)0

= a′(k+1)1 + b
′

(k+1)1 = · · · = a′(k+1)(i−1)
+b′(k+1)(i−1) = a′(k+1)(i+1) + b

′

(k+1)(i+1)) = · · ·
= a′(k+1)(n−1) + b

′

(k+1)(n−1) = bki (3)

a(k+1)0 + a′(k+1)0
= ak0, a(k+1)1 + a′(k+1)1 = ak1, · · · ,

a(k+1)(i−1) + a′(k+1)(i−1)
= ak(i−1), a(k+1)(i+1) + a′(k+1)(i+1)
= ak(i+1), · · · , a(k+1)(n−1) + a′(k+1)(n−1) = ak(n−1) (4)

b(k+1)0 + b′(k+1)0
= bk0, b(k+1)1 + b′(k+1)1 = bk1, · · · ,

b(k+1)(i−1) + b′(k+1)(i−1)
= bk(i−1), b(k+1)(i+1) + b′(k+1)(i+1)
= bk(i+1), · · · , b(k+1)(n−1) + b′(k+1)(n−1) = bk(n−1) (5)

Proof: This follows immediately from the definition of
the signature value and Shannon expansion lemma.
Corollary 1: In the Shannon decomposition binary tree,

signature vector Vfl of the left child node and signature
vector Vfr of the right child node are complementary relative
to the signature vector Vfp of the parent node.

Proof: According to Equations (4) and (5), the signature
vector of fr can be expressed as follows:

Vfr = {(ak0 − a(k+1)0, bk0 − b(k+1)0), (ak1 − a(k+1)1, bk1
−b(k+1)1), · · · , (ak(i−1) − a(k+1)(i−1), bk(i−1)
−b(k+1)(i−1)), (−,−), (ak(i+1) − a(k+1)(i+1), bk(i+1)
−b(k+1)(i+1)), · · · , (ak(n−1) − a(k+1)(n−1), bk(n−1)
−b(k+1)(n−1))}

VOLUME 10, 2022 120373

J. Zhang et al.: Heuristic Boolean NPN Equivalent Matching Verification Method Based on Shannon Decomposition

FIGURE 3. n-variable Shannon decomposition binary tree.

Therefore, the signature vector of fl is complementary to
that of fr relative to that of fp, and Vfl = Vfp − Vfr .
Example 2: There is a Boolean function f (x) = x0x1x2 +

x0x2x3 + x0x1x2x3 + x0x2x3 + x0x1x2x3. We decompose f
by x0 and compute the signature vectors of f , f1 and f0.

Vf = (5, 3), (4, 4), (4, 4), (4, 4)

Vf1 = Vfx0 = (−,−), (2, 3), (2, 3), (3, 2)

Vf0 = Vfx0 = (−,−), (2, 1), (2, 1), (1, 2)

The signature vectors of f1 and f0 satisfy Corollary 1. Then,
we decompose f1 by the variable x1, and the signature vectors
of Vf11 and Vf10 are as follows:

Vf11 = (−,−), (−,−), (1, 2), (2, 1)

Vf10 = (−,−), (−,−), (1, 1), (1, 1)

Here, Property 1, Property 2 and Corollary 1 are satisfied.

B. BOOLEAN DECOMPOSITION VERIFICATION
According to the algorithm of Reference [1], the signature
vectors of two Boolean functions at any node on the first
branch of the transformation search tree are identical and
satisfy all variable mappings of transformation T found in
the decomposition process. If the signature vectors of the two
Boolean functions on all nodes in the Shannon decomposition
binary tree are identical and satisfy the variable mappings
of transformation T , then transformation T must transform
Boolean function f into Boolean function g; that is, f and
g are NP equivalents.

However, we know that n-variable Boolean function
decomposition forms 2n branches. If we verify that all nodes
of each branch satisfy the candidate transformation, the veri-
fication speed is very slow. Therefore, we aim to ensure that
all nodes of each branch are satisfied if we verify that all
nodes of the first and the (2n−1 + 1)th branch are satisfied.

FIGURE 4. Shannon decomposition binary tree of the 2-variable Boolean
function.

If we can prove or verify that it is feasible, the Boolean
matching speed will be greatly increased.

Here, we state a proposition:Given two n-variable Boolean
functions f and g and an NP transformation T , T fol-
lows from the process of NP transformation detection in
Reference [1]. If the two signature vectors of each node
in the (2n−1 + 1)th branch of the Shannon decomposition
binary tree are identical and satisfy the variable mappings
of T , then the two signature vectors of each node of the
Shannon decomposition binary tree are identical and satisfy
the variable mappings of T .

If the above proposition is true, then rapid verification can
be achieved. We prove the proposition by induction for two
n-variable Boolean functions, f and g.

1. If n = 2, there are two 2-variable Boolean func-
tions, f and g, and there is a transformation T = {x

αi0
i0
→

x
pj0
j0
, x
αi1
i1
→ x

pj1
j1
} between them detected by the algorithm

of Reference [1]. In the transformation T , xi0 and yj0 have a
variable mapping, and xi1 and yj1 have a variable mapping.
The order of variables in the following signature vectors is
consistent with the order in which they appear in transforma-
tion T . It is not the sequence 0, 1, · · · , n− 1. The following
descriptions are all similar to this.

Fig. 4 shows a Shannon decomposition binary tree of the
2-variable Boolean function.

120374 VOLUME 10, 2022

J. Zhang et al.: Heuristic Boolean NPN Equivalent Matching Verification Method Based on Shannon Decomposition

1) SETTING THE SIGNATURE VECTORS
Here, we make the following assumptions about the signature
vectors of Boolean functions in each node of the Shannon
decomposition binary tree in Fig. 3.

Vf = {(a0i0 , b0i0), (a0i1 , b0i1)}
Vg = {(c0j0 , d0j0), (c0j1 , d0j1)}
Vf1 = {(−,−), (a1i1 , b1i1)}
Vg1 = {(−,−), (c1j1 , d1j1)}
Vf0 = {(−,−), (a

′

1i1 , b
′

1i1)}
Vg0 = {(−,−), (c

′

1j1 , d
′

1j1)}

Because the signature vectors of two Boolean functions at
any node on the first branch of this Shannon decomposition
binary tree are identical and satisfy all variable mappings in
transformation T , there are two equations as follows:

¬ Vf = Vg
 Vf1 = Vg1

According to Corollary 1, the signature vectors of f1 and
f0 are complementary to f , and the signature vectors of g1 and
g0 are complementary to g. Therefore, there are four equa-
tions as follows:

® a′1i1 = a0i1 − a1i1
¯ b′1i1 = b0i1 − b1i1
° c′1j1 = c0j1 − c1j1
± d ′1j1 = d0j1 − d1j1

2) PHASE PROBLEM
Next, we discuss whether signature vectors f0 and g0 are iden-
tical and satisfy the transformation T . The variable mapping
between xi0 and yj0 may involve the same phase or opposite
phase. The same consideration applies to the variable map-
ping between xi1 and yj1 . Therefore, there are four different
mapping relationships.

1) xi0 and yj0 involve same-phase mapping, and xi1 and yj1
involve same-phase mapping.

According to Equations ¬ and , the following results are
obtained.

a0i0 = c0j0 , b0i0 = d0j0
a0i1 = c0j1 , b0i1 = d0j1
a1i1 = c1j1 , b1i1 = d1j1

According to Equations ®-±, we can obtain a′1i1 = c′1j1
and b′1i1 = d ′1j1 . Therefore, Vf0 = Vg0 , which satisfies

transformation T .
2) xi0 and yj0 involve same-phase mapping, and xi1 and yj1

involve opposite-phase mapping.
According to Equations ¬ and , the following results are

obtained.

a0i0 = c0j0 , b0i0 = d0j0
a0i1 = d0j1 , b0i1 = c0j1
a1i1 = d1j1 , b1i1 = c1j1

According to Equations ®-±, we can obtain
a′1i1 = d ′1j1 and b

′

1i1
= c′1j1 . Therefore, Vf0 = Vg0 , satisfying

transformation T .
3) xi0 and yj0 involve opposite-phase mapping, and xi1 and

yj1 involve same-phase mapping.
According to Equations ¬ and , the following results are

obtained.

a0i0 = d0j0 , b0i0 = c0j0
a0i1 = c0j1 , b0i1 = d0j1
a1i1 = c1j1 , b1i1 = d1j1

According to Equations ®-±, we can obtain a′1i1 = c′1j1
and b′1i1 = d ′1j1 . Therefore, Vf0 = Vg0 , and they satisfy

transformation T .
4) xi0 and yj0 have opposite-phase mappings, and xi1 and

yj1 have opposite-phase mappings.
According to Equations ¬ and , the following results are

obtained.

a0i0 = d0j0 , b0i0 = c0j0
a0i1 = d0j1 , b0i1 = c0j1
a1i1 = d1j1 , b1i1 = c1j1

According to Equations ®-±, we can obtain a′1i1 = d ′1j1
and b′1i1 = c′1j1 .

Therefore, Vf0 = Vg0 , and they satisfy the transforma-
tion T. Therefore, the proposition is true when n = 2.

2. Next, we assume that the hypothesis is true when n = k .
Wemust prove that the hypothesis is also true when n = k+1.

When we match two (k+1)-variable Boolean functions, the
Shannon decomposition binary tree is as shown in Fig. 5.

Here, we assume that when n = k , our proposi-
tion is true, and the NP transformation of two k-variable
Boolean functions with NP equivalence is T = {x

αi0
i0
→

x
pj0
j0
, x
αi1
i1
→ x

pj1
j1
, · · · , x

αi(k−1)
i(k−1)

→ x
pj(k−1)
j(k−1)

}. We have
the following assumption: (1) Boolean function f con-
sists of two k-variable Boolean functions f ′ and f ′′, and
Boolean function g consists of two k-variable Boolean
functions g′ and g′′; (2) f ′ is NP equivalent to g′, f ′′ is
NP equivalent to g′′, and both satisfy our hypothesis. There-
fore, (k+1)-variable Boolean functions f and g can be
expressed as follows:

f = x
αik
ik f ′ + x

1−αik
ik f ′′ = x

αik
ik f

x
αik
ik

+ x
1−αik
ik f

x
1−αik
ik

g = x
pjk
jk g′ + x

1−pjk
jk g′′ = x

pjk
jk g

x
pjk
jk

+ x
1−pjk
jk g

x
1−pjk
jk

According to the matching and decomposition process,
combined with Figure 5, the layer where node H is located
is the last decomposition of the k-variable Boolean function,
and the decomposition result is the nodes of the layer where
node A is located. For (k+1)-Boolean functions, the layer
where node H is located is the (k-1)-th decomposition; that
is, the Boolean functions on node H are fH = f

x
αi0
i0

x
αi1
i1
···x

αi(k−2)
i(k−2)

VOLUME 10, 2022 120375

J. Zhang et al.: Heuristic Boolean NPN Equivalent Matching Verification Method Based on Shannon Decomposition

FIGURE 5. Shannon decomposition binary tree of the (k+1)-variable Boolean function.

and gH = g
x
pj0
j0

x
pj1
j1
···x

pj(k−2)
j(k−2)

. The functions on node H are

decomposed by variable mapping x
αi(k−1)
i(k−1)

→ x
αj(k−1)
j(k−1)

into
node A and node B. The Boolean functions on these two
nodes are as follows.

fA = f
x
αi0
i0

x
αi1
i1
···x

αi(k−1)
i(k−1)

, gA = g
x
pj0
j0

x
pj1
j1
···x

pj(k−1)
j(k−1)

fB = f
x
αi0
i0

x
αi1
i1
···x

1−αi(k−1)
i(k−1)

, gB = g
x
pj0
j0

x
pj1
j1
···x

1−pj(k−1)
j(k−1)

Since we suppose that the hypothesis is true when n = k ,
the two Boolean functions on all nodes from the first level
to the (k-1)th level have identical signature vectors and sat-
isfy our proposition. Next, we must prove that the signature
vectors of the two Boolean functions on all nodes in the k-th
layer are equal.

For the convenience of subsequent proof, the two Boolean
functions of node A1 are fA1 and gA1, the two Boolean func-
tions of node A2 are fA2 and gA2, the two Boolean functions
of node B1 are fB1 and gB1, and the two Boolean functions of
node B2 are fB2 and gB2, as shown in Fig. 5.
If all signature vectors of two Boolean functions on nodes

A1, A2, B1 and B2 are equal, the signature vectors of
two Boolean functions on each node of the left subtree are
equal and satisfy transformation T . The same applies to
the right subtree. If all signature vectors of two Boolean
functions on nodes C1, C2, D1 and D2 are equal, the sig-
nature vectors of two Boolean functions on each node of
the right subtree are equal and satisfy transformation T .
Then, it is proven that the hypothesis is satisfied when
n = k + 1.

This is because the hypothesis is satisfied when n = k .
We have equations VfA = VgA and VfB = VgB . In the
algorithm of Reference [1], any two Boolean functions in the
first branch are equal and computed. Therefore, we have the
equation fA1 = gA1.

(1) Proof that VfA2 = VgA2 .
According to the above complementary Corollary 1,

fA2 = gA2 can be derived from the conditions VfA = VgA
and fA1 = gA1.

(2) Proof that VfB1 = VgB1 and VfB2 = VgB2 .
Let VfB = {(−,−), (−,−), · · · , (aik−1 , bik−1), (aik , bik)}

and VgB = {(−,−), (−,−), · · · , (cjk−1 , djk−1), (cjk , bjk)}.
Because VfB = VgB , (aik−1 , bik−1) = (cjk−1 , djk−1), and
(aik , bik) = (cjk , bjk). Here, as in the case of proving n = 2,
there are four cases, and we prove only the cases of xik−1 and
yjk−1 involving same-phase mapping and xik and yjk involving
same-phase mapping; the other cases are similar and not
reviewed.

According to VfB = VgB , the following conditions must be
satisfied.

aik−1 = cjk−1
bik−1 = djk−1
aik = cjk
bik = djk

Let the signature vectors of Boolean functions Vf B1, VgB1,
Vf B2 and VgB2 be as follows:

VfB1 = {(−,−), · · · , (−,−)(a, b)}
VgB1 = {(−,−), · · · , (−,−)(c, d)}
VfB2 = {(−,−), · · · , (−,−)(̃a, b̃)}
VgB2 = {(−,−), · · · , (−,−)(̃c, d̃)}

The Boolean functions in nodes B1 and B2 are generated
by the same-phase variable mapping between xik−1 of fB
and xjk−1 of gB. Therefore, the following conditions must be
satisfied.

a+ b = aik−1
c+ d = cjk−1
ã+ b̃ = bik−1

120376 VOLUME 10, 2022

J. Zhang et al.: Heuristic Boolean NPN Equivalent Matching Verification Method Based on Shannon Decomposition

c̃+ d̃ = djk−1
a+ ã = aik
b+ b̃ = bik
c+ c̃ = cjk
d + d̃ = djk

In the last layer of the decomposition binary tree, each
Boolean function has only one variable that is not decom-
posed. The signature vector of each node in the last layer
has only one variable signature value. This variable signature
value can take only one of (0, 0), (0, 1), (1, 0) and (1, 1); that
is, (a, b),(̃a, b̃),(c, d) and (̃c, d̃) can take only one of the above
four values
• (a, b) = (0, 0)
According to Conditions 5 and 6, a + b = c + d .
Therefore, (c, d) must be (0, 0), and VfB1 = VgB1 is sat-
isfied. We have (̃a, b̃) = (aik , bik) and (̃c, d̃) = (cjk , bjk).
According to Conditions 3 and 4, VfB2 = VgB2 can be
deduced.

• (a, b) = (1, 1)
According to Conditions 5 and 6, a + b = c + d .
Therefore, (c, d) must be (1, 1), and VfB1 = VgB1 is
satisfied. We have (̃a, b̃) = (aik − 1, bik − 1) and
(̃c, d̃) = (cjk − 1, bjk − 1). According to Conditions 3
and 4, VfB2 = VgB2 can be deduced.

• (a, b) = (0, 1)
According to Conditions 5 and 6, a + b = c + d .
Therefore, (c, d) is (0, 1) or (1, 0).
If (c, d) = (0, 1), (̃a, b̃) = (aik , bik − 1), and (̃c, d̃) =
(cjk , djk − 1). According to Conditions 3 and 4, VfB2 =
VgB2 can be deduced.
If (c, d) = (1, 0), (̃a, b̃) = (aik , bik − 1), and
(̃c, d̃) = (cjk −1, djk). According to Conditions 3 and 4,
VfB2 = VgB2 can be deduced.
The difference between (c, d) = (0, 1) and (c, d) =
(1, 0) is the phase. Because our algorithm performs
phase collision detection, the phase problem has been
resolved.

• (a, b) = (1, 0)
The case of (a, b) = (1, 0) is identical to that of
(a, b) = (0, 1).

The proof of the right subtree is identical to that of the left
subtree. Now, we can prove that the signature vectors of two
Boolean functions in each node on the last layer are equal
and satisfy transformation T . Therefore, the hypothesis is true
when n = k + 1.

In this hypothesis, we assume that the signature vectors
of the two Boolean functions on each node of the front
k layers are identical. However, are there special circum-
stances in the matching that do not meet our assumption?
Through experiments, it was found that in the worst case, that
is, when the positive and negative signatures of many or even
all dependent variables are always identical in the decompo-
sition process, errors may occur. Nevertheless, this kind of
situation is very rare. Therefore, when we encounter these

special circumstances, we resort to the verification method in
Reference [1].

Because our algorithm makes full use of symmetry detec-
tion, phase conflict detection, and decomposition to obtain
new signatures and grouping methods, the new verification
method is effective in most cases. Next, we demonstrate this
method with two examples.
Example 3: Consider the Boolean functions f (x) =

x0x1x3+x0x1x3+x0x1x2x3+x0x1x2x3+x0x1x2x3+x0x1x2x3
and g(x) = x0x1x3+x0x1x3+x0x1x3+x0x1x2x3+x0x1x2x3.
We use the signature vector matching Boolean functions f
and g without symmetry detection, variable grouping and
phase conflict detection and assess the signature vector of the
function at each node of the first and (2n−1 + 1)th branches
of the decomposition tree in this process. Here, the order of
the variables is x0,x1,x2 and x3.

1.We compute the signature vectors of Boolean functions f
and g.

Vf = {(4, 4), (4, 4), (4, 4), (5, 3)}

Vg = {(5, 3), (4, 4), (4, 4), (4, 4)}

2. According to the above signature vectors, we have vari-
able mapping x3 → x0. We decompose Boolean function f
by x3 and Boolean function g by x0. f1 = fx3 , f0 = fx3 ,
g1 = fx0 , and g0 = fx0 . We compute the signature vectors
of these four Boolean functions.

Vf1 = {(3, 2), (2, 3), (2, 3), (−,−)}

Vg1 = {(−,−), (2, 3), (2, 3), (2, 3)}

Vf0 = {(1, 2), (2, 1), (2, 1), (−,−)}

Vg0 = {(−,−), (2, 1), (2, 1), (2, 1)}

3. From the above results, we obtain Vf1 = Vg1 and
Vf0 = Vg0 . There are three candidate variable mappings:
x0→ x1, x0→ x2 and x0→ x3. Here, we try x0→ x1 and

obtain the following Boolean functions.

f11 = x0f1x0 , g11 = x1g1x1 ,

f10 = x0f1x0 , g10 = x1g1x1 ,

f01 = x0f0x0 , g01 = x1g0x1 ,

f00 = x0f0x0 , g00 = x1g0x1 .

We compute the signature vectors of these eight Boolean
functions.

Vf11 = {(−,−), (2, 1), (1, 2), (−,−)}

Vg11 = {(−,−), (−,−), (1, 2), (2, 1)}

Vf10 = {(−,−), (0, 2), (1, 1), (−,−)}

Vg10 = {(−,−), (−,−), (1, 1), (0, 2)}

Vf01 = {(−,−), (0, 1), (1, 0), (−,−)}

Vg01 = {−,−), (−,−), (1, 0), (0, 1)}

Vf00 = {(−,−), (2, 0), (1, 1), (−,−)}

Vg00 = {(−,−), (−,−), (1, 1), (2, 0)}

VOLUME 10, 2022 120377

J. Zhang et al.: Heuristic Boolean NPN Equivalent Matching Verification Method Based on Shannon Decomposition

FIGURE 6. Shannon decomposition binary tree of Example 3.

4. From the above results, Vf11 = Vg11 ,Vf10 = Vg10 , Vf01 =
Vg01 , and Vf00 = Vg00 . According to Vf11 = Vg11 , we have two
variable mappings: x1→ x2 and x1→ x3. We try x1→ x2.

f111 = x1f11x1 , g111 = x2g11x2 , f110 = x1f11x1 ,

g110 = x2g11x2 , f101 = x1f10x1 , g101 = x2g10x2 ,

f100 = x1f10x1 , g100 = x2g10x2 f011 = x1f01x1 ,

g011 = x2g01x2 , f010 = x1f01x1 , g010 = x2g01x2 ,

f001 = x1f00x1 , g001 = x2g00x2 , f000 = x1f00x1 ,

g000 = x2g00x2 .

We compute the signature vectors of these eight Boolean
functions.

Vf111 = {(−,−), (−,−), (1, 1), (−,−)}

Vg111 = {(−,−), (−,−), (−,−), (1, 1)}

Vf110 = {(−,−), (−,−), (0, 1), (−,−)}

Vg110 = {(−,−), (−,−), (−,−), (1, 0)}

Vf101 = {(−,−), (−,−), (−,−), (−,−)}

Vg101 = {(−,−), (−,−), (−,−), (0, 1)}

Vf100 = {(−,−), (−,−), (1, 1), (−,−)}

Vg100 = {(−,−), (−,−), (−,−), (0, 1)}

Vf011 = {(−,−), (−,−), (−,−), (−,−)}

Vg011 = {(−,−), (−,−), (−,−), (−,−)}

Vf010 = {(−,−), (−,−), (1, 0), (−,−)}

Vg010 = {(−,−), (−,−), (−,−), (0, 1)}

Vf001 = {(−,−), (−,−), (1, 1), (−,−)}

Vg001 = {(−,−), (−,−), (−,−), (1, 0)}

Vf000 = {(−,−), (−,−), (−,−), (−,−)}

Vg000 = {(−,−), (−,−), (−,−), (1, 0)}

From the above results, Vf111 = Vg111 ,Vf110 = Vg110 ,
Vf101 6= Vg101 ,Vf100 6= Vg100 ,Vf011 = Vg011 ,Vf010 = Vg010 ,
Vf001 6= Vg001 , and Vf000 6= Vg000 . The binary tree generated
by the decomposition is shown in Fig. 6.

From the above results, the following anomalies are
observed.

(1) In the second branch, Vf10 = Vg10 , but Vf101 6= Vg101 ,
and Vf100 6= Vg100 .
(2) In the fourth branch, Vf00 = Vg00 , but Vf001 6= Vg001 , and

Vf000 6= Vg000 .
By observing the decomposed variables, we find the causes

of these two problems as follows.
(1) Decomposition variable x1 of Boolean function f is a

symmetry variable. However, decomposition variable x2 of
Boolean function g is a nonsymmetry variable. The two
variables are of different types. Variable mapping x1→ x2 is
incorrect. In our algorithm, we perform symmetry detection.
Therefore, our algorithm must not attempt variable mapping
x1 → x2 but rather variable mapping x1 → x3. When we
attempt x1→ x3, the above situation does not occur, and our
proposition is satisfied.

(2) In node H, variable x1 of Boolean function f and vari-
able x2 of Boolean function g are of the same phase. However,
they have the opposite phase in node A. In our algorithm,
we check for a phase conflict. If a variable mapping is correct,
the relation of their phase remains unchanged. Thus, our
algorithm also excludes this mapping early.
Example 4: Consider Boolean functions f (x) = x1x2 +

x1x4+x2x3 and g(x) = x1x2+x3x4+x2x3+x2x3x4. As shown
in Example 3, we review the detection and verification
process.

1.We compute the signature vectors of Boolean functions f
and g.

Vf = {(5, 6), (6, 5), (7, 4), (4, 7)}

Vg = {(7, 4), (5, 6), (4, 7), (6, 5)}

2. According to the above signature vectors, there are
two candidate variable mappings: x1 → x2 and x1 →
x4. We attempt the first variable mapping. We decompose
Boolean function f by x1 and Boolean function g by x2.
f1 = x1fx1 , f0 = x1fx1 , g1 = x2fx2 , and g0 =

x2fx2 . We compute the signature vectors of these four

120378 VOLUME 10, 2022

J. Zhang et al.: Heuristic Boolean NPN Equivalent Matching Verification Method Based on Shannon Decomposition

FIGURE 7. Shannon decomposition binary tree of Example 4.

Boolean functions.

Vf1 = {(−,−), (4, 2), (4, 2), (3, 3)}

Vg1 = {(3, 3), (−,−), (2, 4), (4, 2)}

Vf0 = {(−,−), (2, 3), (3, 2), (1, 4)}

Vg1 = {(4, 1), (−,−), (2, 3), (2, 3)}

3. From the above results, we obtain Vf1 = Vg1 and Vf0 =
Vg0 . There are two candidate variable mappings: x2 → x3
and x2→ x4. Here, we try x2→ x3.

f11 = x2f1x2 , g11 = x3g1x3 , f10 = x2f1x2 , g10 = x3g1x3 ,

f01 = x2f0x2 , g01 = x3g0x3 , f00 = x2f0x2 , g00 = x3g0x3 .

We compute the signature vectors of these eight Boolean
functions.

Vf11 = {(−,−), (−,−), (2, 2), (2, 2)}

Vg11 = {(2, 2), (−,−), (−,−), (2, 2)}

Vf10 = {(−,−), (−,−), (2, 0), (1, 1)}

Vg10 = {(1, 1), (−,−), (−,−), (2, 0)}

Vf01 = {(−,−), (−,−), (1, 1), (0, 2)}

Vg01 = {2, 1), (−,−), (−,−), (1, 2)}

Vf00 = {(−,−), (−,−), (2, 1), (1, 2)}

Vg01 = {(2, 0), (−,−), (−,−), (1, 1)}

From the above results, Vf11 = Vg11 ,Vf10 = Vg10 , Vf01 6=
Vg01 , and Vf00 6= Vg00 . The binary tree generated by decom-
position is shown in Fig. 7.

The above results do not satisfy our proposition. According
to Reference [1], the signature values of two variables of a
correct variable mapping are synchronously changed. In this
example, variable x2 of Boolean function f and variable x4
of Boolean function g violate this principle. Therefore, our
algorithm must not generate variable mapping x2→ x3.

V. MATCHING ALGORITHM
Our algorithm is mainly composed of three parts. Parts 1
and 2 are the methods of transformation detection, which
are similar to the algorithm in Reference [1] with minor
differences. Part 3 is our proposed verification algorithm.

A. BOOLEAN MATCHING INITIALISATION AND
JUDGMENT OF THE NOT OPERATION ON OUTPUT
(1) For two n-variable Boolean functions, f and g, we use a
zeroth-order signature to determine whether the NOT opera-
tion is on the output. If |f | = 2n − |g| ∧ |f | 6= |g|, there is
a NOT operation on the output. If |f | = |g| = 2n−1, there
may or may not be a NOT operation on the output. Handling
this special case is identical to the algorithm in Reference [1].
If f is not NP equivalent to g, the algorithmwill match f and g.
(2)We calculate the 1st structural signature vectors of f and g,
symmetry variable check and grouping. (3) We compare the
two 1st structural signature vectors. If they are different, they
are not NPN equivalent. Otherwise, we execute the algorithm
of part 2 to search the candidate transformation [1].

The differences from Reference [1] in part 1 are as follows:
we add (1) an independent variable check; (2) a comparison
of the symmetric variable structure of two Boolean functions;
and (3) a comparison of the number of independent variables
of two Boolean functions. These differences can help deter-
mine the inequivalence of two Boolean functions as early as
possible.

B. CANDIDATE TRANSFORMATION DETECTION
We extend the method of candidate transformation detection
in Reference [1]. In our algorithm, independent variables
are detected in the initialization and preliminary evalua-
tion procedures. During the candidate transformation detec-
tion, we create variable mappings between independent vari-
ables, and the independent variable mapping set is the min-
imum variable mapping set. We first use the variables of
an independent variable mapping to perform the Shannon
decomposition.

C. VERIFY CANDIDATE TRANSFORMATIONS
Based on the hypothesis of this paper, we propose a new
verification method as follows.

When our algorithm detects a candidate transformation,
this transformation is stored in a linked list. Let the can-
didate transformation be T = {xαi0i0 → x

pj0
j0 , x

αi1
i1 →

x
pj1
j1 , · · · , x

αi(n−1)
i(n−1) → x

pj(n−1)
j(n−1)}. Our algorithm orders the vari-

able mappings of this linked list by the value of |f
xik

1−αik
|,

where k ∈ {0, 1, · · · , n − 1}. After sorting, the variables of
the first variable mapping have the maximum signature value.
The goal of this task is to ensure that Boolean functions, f and
g, can be decomposed as many times as possible. Therefore,
our algorithm reorders the remaining variable mappings after
each variable mapping verification.

Condition D0 checks whether all variable mappings of
candidate transformation are verified. When D0 is true, the
current candidate transformation is verified as correct. Three
cases indicate that the current candidate transformation does
not satisfy the NP equivalent condition.

(1) If UPDATE(f , g, cube_f , cube_g)= 0, the two new SS
vectors are not identical. The algorithm returns 0.

VOLUME 10, 2022 120379

J. Zhang et al.: Heuristic Boolean NPN Equivalent Matching Verification Method Based on Shannon Decomposition

Algorithm 1 Transformation Verification
Input: f , g, cube_f , cube_g,map_list
Output: 0 or 1

Compute the number of verified mappings
if D0 then
Return 1

else
if UPDATE(f , g, cube_f , cube_g)=0 then

Return 0
else

if V ′p−>x 6= V ′p−>y then
Return 0

else
if D1 then
Return 0

else
Update cube_f and cube_g
Return VERIFY(cube_f , cube_g, p− > next)

end if
end if

end if
end if

(2) If Condition D1 is true, the two variables of the cur-
rent variable mapping have a phase collision. The algorithm
returns 0.

(3) If V ′p−>x 6= V ′p−>y, the group numbers of the two
variables in the current variable map are different. This shows
that their signature values do not change synchronously and
that the mapping is wrong. The algorithm returns 0.

When the current variable mapping is verified to be true,
our algorithm verifies the next variable mapping. If the cur-
rent variable mapping is verified as false, our algorithm per-
forms candidate transformation detection to obtain the next
candidate transformation.

However, this verification method cannot verify the
worst-case Boolean matching. In the worst case, most vari-
ables satisfy |fxi | = |fxi |; however, a case can occur where the
phase of some variables can never be determined. Therefore,
in this case, we use the verification method of Reference [1].

VI. EXPERIMENTAL RESULTS
The algorithm described in this paper is implemented in a
hardware environment with a 3.3-GHz central processing unit
(CPU) and 4GB of RAM. The runtime is the time spent by the
CPU when matching.The runtimes are reported in seconds.
The algorithm in this paper is implemented in C.

To demonstrate the effectiveness of our proposed algo-
rithm, we conduct an experiment using large circuit sets.
We perform experiments on three data sets. The data in the
first data set come from the MCNC benchmark. The second
and third data sets are randomly generated. However, the
Boolean functions in the third data set satisfy the condition
|f | = |g| = 2n−1. All of these Boolean circuits have 7-22
input variables. For every Boolean function, whether from the

TABLE 1. Boolean matching runtimes on the first data set.

MCNC benchmark or randomly generated, we use the pro-
gram to automatically generate randomNPN transformations
and use these transformations to generate equivalent Boolean
functions, which form our test data set. Then, we compare the
results of our algorithm with those of Reference [1].

The following three tables are the matching runtime com-
parison results between our algorithm and the algorithm in
Reference [1] on the above three different sets of Boolean
functions. Table 1 shows the experimental results on the
first data set, i.e., the equivalent MCNC benchmark circuit.
Table 2 shows the results tested on the second data set, which
is a randomly generated circuit set. Table 3 shows the results
tested on the third data set, which is a randomly generated
circuit set that satisfies |f | = |g| = 2n−1.
The first column (#I) is the number of input variables. The

#MIN, #MAX, and #AVG represent the minimum, maximum
and average matching runtimes, respectively where the aver-
age matching time is the arithmetic mean of the runtimes. The
second, third and fourth columns are the matching runtime
results of our algorithm, and the fifth, sixth and seventh
columns are the matching runtime results of Reference [1].
#PR is the percentage of the improvement in average runtime
between our algorithm and the algorithm in Reference [1].

Table 1 shows that the average matching speed of our
algorithm is 51% higher than that of Reference [1] on the
first Boolean function set. The results of Table 2 show that
the average matching speed of our algorithm is increased by
65.5% compared with that of Reference [1] on the second
Boolean function set. The average matching speed of our
algorithm on the third Boolean function set is 72.1% faster
than that of Reference [1]. Overall, the average matching
speed of our algorithm is increased by 62.9% compared with
that of Reference [1]. From the above experimental results,
it can be seen that the speed increases with the increase in
the number of variables. In Table 2, when the number of
variables is 7 and 8, the matching speed is slightly lower than

120380 VOLUME 10, 2022

J. Zhang et al.: Heuristic Boolean NPN Equivalent Matching Verification Method Based on Shannon Decomposition

TABLE 2. Boolean matching runtimes on the second data set.

TABLE 3. Boolean matching runtimes on the third data set.

that of Reference [1]. These results show that our verification
method is more effective for Boolean function matching with
larger variables.

VII. CONCLUSION
This paper proposes a Boolean matching verification algo-
rithm. The experimental results verify that our algorithm
can effectively improve the Boolean matching speed. Com-
pared with the algorithm of Reference [1], our algorithm
performs 62.9% faster on average. Our algorithm can be
applied well to technology mapping and cell-library binding.
In future work, we plan to research how to resolve NPN
Boolean matching for the worst Boolean function.

REFERENCES
[1] J. Zhang, G. Yang,W. N. N. Hung, Y. Zhang, and J.Wu, ‘‘An efficient NPN

Boolean matching algorithm based on structural signature and Shannon
expansion,’’ Cluster Comput., vol. 22, no. S3, pp. 7491–7506, May 2019,
doi: 10.1007/s10586-018-1787-x.

[2] C. Wu, C. Hsu, and K. Y. Khoo, ‘‘ICCAD-2016 CAD contest in non-exact
projective NPNP Boolean matching and benchmark suite,’’ in Proc. 35th
Int. Conf. Computer-Aided Design, Austin, TX, USA, Nov. 2016, pp. 1–5.

[3] V. K. Mishra, M. Dixit, T. Choudhary, A. Goswami, M. Kaur,
O. Cheikhrouhou, and H. Hamam, ‘‘A heuristic-driven and cost
effective majority/minority logic synthesis for post-CMOS emerging
technology,’’ IEEE Access, vol. 9, pp. 168689–168702, 2021, doi:
10.1109/ACCESS.2021.3079310.

[4] Y. Guo, X. Wang, Q. Hong, and Y. Zhang, ‘‘A serial access scheme
design on memristor-CMOS hybrid memory,’’ IEEE Access, vol. 8,
pp. 35031–35037, 2020, doi: 10.1109/ACCESS.2020.2974015.

[5] J. Zhang, G. Yang, W. N. N. Hung, T. Liu, X. Song, and M. A. Perkowski,
‘‘A group algebraic approach to NPN classification of Boolean functions,’’
Theory Comput. Syst., vol. 63, no. 6, pp. 1278–1297, Aug. 2019, doi:
10.1007/s00224-018-9903-0.

[6] X. Zhou, L. Wang, P. Zhao, and A. Mishchenko, ‘‘Fast adjustable NPN
classification using generalized symmetries,’’ in Proc. 28th Int. Conf. Field
Program. Log. Appl. (FPL), Dublin, Ireland, Aug. 2018, pp. 1–16.

[7] A. Petkovska, M. Soeken, G. De Micheli, P. Ienne, and A. Mishchenko,
‘‘Fast hierarchical NPN classification,’’ in Proc. 26th Int. Conf. Field
Program. Log. Appl. (FPL), Lausanne, Germany, Aug. 2016, pp. 1–4.

[8] Z. Wang, X. Zeng, J. Wu, and G. Yang, ‘‘A method for determin-
ing the affine equivalence of Boolean functions,’’ IEEE Access, vol. 7,
pp. 156326–156337, 2019, doi: 10.1109/ACCESS.2019.2949310.

[9] Z. Huang, L. Wang, Y. Nasikovskiy, and A. Mishchenko, ‘‘Fast Boolean
matching based on NPN classification,’’ in Proc. Int. Conf. Field-Program.
Technol. (FPT), Kyoto, Japan, Dec. 2013, pp. 310–313.

[10] A. Adbollahi and M. Pedram, ‘‘Symmetry detection and Boolean match-
ing utilizing a signature-based canonical form of Boolean functions,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 6,
pp. 1128–1137, May 2008, doi: 10.1109/TCAD.2008.923256.

[11] J. Zhang, ‘‘A canonical-based NPN Boolean matching algorithm utiliz-
ing Boolean difference and cofactor signature,’’ IEEE Access, vol. 5,
pp. 27777–27785, 2017, doi: 10.1109/ACCESS.2017.2778338.

[12] D. Debnath and T. Sasao, ‘‘Efficient computation of canonical
form under variable permutation and negation for Boolean
matching in large libraries,’’ IEICE Trans. Fundamentals Electron.,
Commun. Comput. Sci., vol. 89, no. 12, pp. 3443–3450, Dec. 2006,
doi: 10.1093/ietfec/e89-a.12.3443.

[13] G. Agosta, F. Bruschi, G. Pelosi, and E. al, ‘‘A transform-parametric
approach to Boolean matching’ IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 28, no. 6, pp. 805–817, Jun. 2009, doi:
10.1109/TCAD.2009.2016547.

[14] S. F. Vinokurov, L. Ryabets, S. I. Todikov, and A. S. Frantseva, ‘‘Algorithm
for constructing minimal representations of multiple-output Boolean func-
tions in the reversible logic circuits,’’ in Proc. 20th IEEE Int. Conf. Soft
Comput. Meas. (SCM), St.Peterburg, Russia, May 2017, pp. 541–543.

[15] S. F. Vinokurov and A. S. Frantseva, ‘‘Complexity of representations of
multiple-output Boolean functions in the reversible logic circuits,’’ in Proc.
25th IEEE Int. Conf. Soft Comput. Meas. (SCM), St. Peterburg, Russia,
May 2016, pp. 374–376.

[16] X. Zhou, L. Wang, and A. Mishchenko, ‘‘Fast exact NPN classifica-
tion by co-designing canonical form and its computation algorithm,’’
IEEE Trans. Comput., vol. 69, no. 9, pp. 1293–1307, Sep. 2020, doi:
10.1109/TC.2020.2971466.

[17] A. Abdollahi, ‘‘Signature based Boolean matching in the presence of don’t
cares,’’ in Proc. 45th Annu. Conf. Design Autom. (DAC), Anaheim, CA,
USA, Jun. 2008, pp. 642–647.

[18] J. Zhang, G. Yang, W. Hung, J. Wu, and Y. Zhu, ‘‘A new pairwise NPN
Boolean matching algorithm based on structural difference signature,’’
Symmetry, vol. 11, no. 1, p. 27, Dec. 2018, doi: 10.3390/sym11010027.

[19] J. Zhang, L. Ni, S. Zheng, H. Liu, X. Zou, F.Wang, and G. Luo, ‘‘Enhanced
fast Boolean matching based on sensitivity signatures pruning,’’ in Proc.
ICCAD, Munich, Germany, Nov. 2021, pp. 1–9.

[20] F. Wang, J. Zhang, L. Wu, W. Zhang, and G. Luo, ‘‘Search space reduction
for the non-exact projective NPNP Boolean matching problem,’’ in Proc.
ISCAS, Baltimore, MD, USA, May 2017, pp. 1–4.

[21] K.Wang, C. Chan, and J. Liu, ‘‘Simulation and SAT-based Boolean match-
ing for large Boolean networks,’’ Proc. 46th Int. Conf. ACM/IEEE Design
Automation Conf., San Francisco, CA, USA, Jul. 2009, pp. 396–401.

[22] W. Xiu-Qin and Y. Yang, ‘‘New approach of exploiting symmetry in SAT-
based Boolean matching for FPGA technology mapping,’’ in Proc. IEEE
Int. Conf. Veh. Electron. Saf., Dongguan, China, Jul. 2013, pp. 282–285.

[23] Y. Matsunaga, ‘‘Accelerating SAT-based Boolean matching for heteroge-
neous FPGAs using one-hot encoding and CEGAR technique,’’ IEICE
Trans. Fundamentals Electron., Commun. Comput. Sci., vol. 99, no. 7,
pp. 1374–1380, Jul. 2016, doi: 10.1587/transfun.E99.A.1374.

VOLUME 10, 2022 120381

http://dx.doi.org/10.1007/s10586-018-1787-x
http://dx.doi.org/10.1109/ACCESS.2021.3079310
http://dx.doi.org/10.1109/ACCESS.2020.2974015
http://dx.doi.org/10.1007/s00224-018-9903-0
http://dx.doi.org/10.1109/ACCESS.2019.2949310
http://dx.doi.org/10.1109/TCAD.2008.923256
http://dx.doi.org/10.1109/ACCESS.2017.2778338
http://dx.doi.org/10.1093/ietfec/e89-a.12.3443
http://dx.doi.org/10.1109/TCAD.2009.2016547
http://dx.doi.org/10.1109/TC.2020.2971466
http://dx.doi.org/10.3390/sym11010027
http://dx.doi.org/10.1587/transfun.E99.A.1374

J. Zhang et al.: Heuristic Boolean NPN Equivalent Matching Verification Method Based on Shannon Decomposition

[24] C. Zhang, H. Yu, L. Wang, ‘Accelerating Boolean matching using Bloom
filter,’’ IEICE Trans. Fundamentals Electron., Commun. Comput. Sci.,
vol. 93, no. 10, pp. 1775–1781, Oct. 2010.

[25] K. Wang and C. Chan, ‘‘Incremental learning approach and SAT model
for Boolean matching with don’t cares,’’ in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design, San Jose, CA, USA. Dec. 2007, pp. 234–239.

[26] C. F. Lai, J. Jiang, and K. H. Wang, ‘‘BooM: A decision procedure for
Booleanmatchingwith abstraction and dynamic learning,’’ inProc. Design
Autom. Conf., Anaheim, CA, USA, Jun. 2010, pp. 499–504.

[27] C. F. Lai, J. Jiang, and K. H. Wang, ‘‘Boolean matching of function
vectors with strengthened learning,’’ in Proc. ICCAD, San Jose, CA, USA,
Nov. 2010, pp. 596–601.

[28] M. Damiani and A. Y. Selchenko, ‘‘Boolean technology mapping based
on logic decomposition,’’ in Proc. 16th Symp. Integr. Circuits Syst. Design
(SBCCI), Sao Paulo, Brazil, Sep. 2003, pp. 35–40.

[29] S. Ji and H.-A. Jacobsen, ‘‘A-tree: A dynamic data structure for efficiently
indexing arbitrary Boolean expressions,’’ inProc. Int. Conf. Manage. Data,
Jun. 2021, pp. 817–829.

[30] C.-W. Pui, P. Tu, H. Li, G. Chen, and E. F. Y. Young, ‘‘A two-step search
engine for large scale Boolean matching under NP3 equivalence,’’ in Proc.
23rd Asia South Pacific Design Autom. Conf. (ASP-DAC), Jeju, South
Korea, Jan. 2018, pp. 592–598.

[31] G. Agosta, F. Bruschi, G. Pelosi, and D. Sciuto, ‘‘A unified approach
to canonical form-based Boolean matching,’’ in Proc. 44th ACM/IEEE
Design Autom. Conf., San Diego, CA, USA, Jun. 2007, pp. 841–846.

[32] J. Zhang,M. Chrzanowska-Jeske, A.Mishchenko, and J. R. Burch, ‘‘Linear
cofactor relationships in Boolean functions,’’ IEEETrans. Computer-Aided
Design Integr. Circuits Syst., vol. 25, no. 6, pp. 1011–1023, Jun. 2006, doi:
10.1109/TCAD.2005.855951.

JULING ZHANG received the M.S. degree from
the School of Information and Communication
Engineering, Xinjiang University, China, in 2007,
and the Ph.D. degree from the School of Com-
puter Science and Engineering, University of Elec-
tronic Science and Technology of China, China,
in 2018. She is currently an Associate Profes-
sor with the Xinjiang University of Finance and
Economics. Her research interests include logic
synthesis, information security risk assessments,
and internet public sentiment management.

WENQIANG GUO received the B.S., M.S., and
Ph.D. degrees from the School of Computer
Science and Technology, Dalian University of
Technology, China, in 1998, 2004, and 2007,
respectively. He is currently a Full Professor at the
Xinjiang University of Finance and Economics.
He has published more than 100 journals and
conference papers. His research interests include
internal security, renewable energy systems, and
smart grids.

GUOWU YANG (Member, IEEE) received the
B.S. degree from the University of Science
and Technology of China, in 1989, the M.S.
degree from the Wuhan University of Technology,
in 1994, and the Ph.D. degree in electrical and
computer engineering from Portland State Uni-
versity, in 2005. He worked at the Wuhan Uni-
versity of Technology, from 1989 to 2001, and
at Portland State University, from 2005 to 2006.
He is currently a Full Professor at the University

of Electronic Science and Technology of China. He has published more
than 100 journals and conference papers. His research interests include
verification, logic synthesis, quantum computing, and machine learning.

YIXIN ZHU received the Ph.D. degree from the
School of Information and Software Engineering,
University of Electronic Science and Technology
of China, in 2015. He is currently an Associate
Professor at the Xinjiang University of Finance
and Economics. His current research interests
include information security and complex network
propagation dynamics.

XIAOYI LV received the M.S. degree from the
School of Information and Communication Engi-
neering, Xinjiang University, China, in 2006, and
the Ph.D. degree from the School of Electronic and
Information Engineering, Xi’an Jiaotong Univer-
sity, China, in 2010. He is currently a Full Profes-
sor at the School of Software, Xinjiang University.
His research interests include logical synthesis and
artificial intelligence.

120382 VOLUME 10, 2022

http://dx.doi.org/10.1109/TCAD.2005.855951

