
Reverse Engineering Camouflaged Sequential
Circuits Without Scan Access

Mohamed El Massad
New York University

Brooklyn, USA

me1361@nyu.edu

Siddharth Garg
New York University

Brooklyn, USA

sg175@nyu.edu

Mahesh Tripunitara
University of Waterloo

Waterloo, Canada

tripunit@uwaterloo.ca

Abstract—Integrated circuit (IC) camouflaging is a promising
technique to protect the design of a chip from reverse engineering.
However, recent work has shown that even camouflaged ICs can
be reverse engineered from the observed input/output behaviour
of a chip using SAT solvers. However, these so-called SAT attacks
have so far targeted only camouflaged combinational circuits. For
camouflaged sequential circuits, the SAT attack requires that the
internal state of the circuit is controllable and observable via
the scan chain. It has been implicitly assumed that restricting
scan chain access increases the security of camouflaged ICs from
reverse engineering attacks. In this paper, we develop a new
attack methodology to decamouflage sequential circuits without
scan access. Our attack uses a model checker (a more powerful
reasoning tool than a SAT solver) to find a discriminating set of
input sequences, i.e., one that is sufficient to determine the func-
tionality of camouflaged gates. We propose several refinements,
including the use of a bounded model checker, and sufficient
conditions for determining when a set of input sequences is
discriminating to improve the run-time and scalabilty of our
attack. Our attack is able to decamouflage a large sequential
benchmark circuit that implements a subset of the VIPER
processor.

I. INTRODUCTION

Vendors that provide commercial IC reverse engineering
services are an increasing threat to the confidentiality of IC de-
signs. Using chemical etching and high-resolution microscopy,
vendors of reverse engineering services have reconstructed
gate-level netlists of complex nanometer scale ICs [1], thus
compromising the IC designer’s intellectual property (IP). IP
theft of this nature can negatively impact an IC designer’s
revenue and competitive advantage.

IC camouflaging is a promising technique to protect the
designer’s IP against reverse engineering attacks. IC cam-
ouflaging works by augmenting a traditional CMOS tech-
nology library with so-called camouflaged standard cells.
A camouflaged standard cell can implement one of many
Boolean logic functions, even though its layout looks the
same to a reverse engineer regardless of its functionality.
Several different techniques have been proposed in literature
to implement camouflaged standard cells. These include the
use of dummy contacts [2] and threshold-voltage dependent
camouflaging [3]–[5]. Given the economic and strategic value
of IC camouflaging, there has been considerable research on

This research was supported in part by NSF Grants #1527072 and
#1553419, and a grant from the Semiconductor Research Corporation (SRC).
Any views expressed are the authors’ own and do not necessarily reflect the
views of the NSF or SRC.

determining which gates in an IC to camouflage so as to
maximize security [6]–[8].

Recently, El Massad et al. [9] demonstrated that all existing
camouflaging schemes can be broken using the so-called “SAT
attack.” (A similar technique to defeat logic encryption was
concurrently proposed in [10].) The SAT attack assumes that
the attacker has access to two functioning copies of the IC. One
is reverse-engineered to reconstruct the IC’s netlist barring, of
course, the functionality of each camouflaged standard cell.
The other copy is used to observe the IC’s input/output (I/O)
behavior.

The goal of the SAT attack is to find a set of inputs that
are sufficient to deduce the functionality of the camouflaged
standard cells. The attack iteratively determines new inputs
that prune the attacker’s search space. The attack terminates
when the camouflaged standard cells have only one unique
assignment (or multiple functionally equivalent assignments).
New input patterns and the final completion (a completion is an
assignment of identities to camouflaged gates) are determined
using a SAT solver. El Massad et al. demonstrated empirically
that only a small number of inputs are required to exactly
decamouflage even large benchmark netlists, and that attackers
can do so in the order of minutes. This work has resulted
in renewed focus on stronger camouflaging schemes that are
secure against SAT attacks [7], [8].

However, one criticism of the SAT attack and its subse-
quent enhancements [11] is that these attacks have all focused
on decamouflaging combinational netlists, i.e., netlists without
internal state. Real world ICs, on the other hand, are typically
sequential, i.e., they implement finite state machines (FSMs)
with internal state stored in flip-flops. The SAT attack implic-
itly assumes that the IC’s internal state can be fully controlled
and observed via scan chains, thus reducing the problem to
that of reverse engineering a combinational netlist. A designer
concerned about IP theft, however, can easily block user-mode
access to the scan chain using a secure scan interface [12].
Thus, although the attacker still has access to the IC’s primary
I/Os, they cannot control or observe the state of internal flip-
flops during IC operation. As we illustrate below, the SAT
attack does not work for ICs with internal state that
cannot be accessed via scan chains. This is a major practical
limitation of the SAT attack.

Motivational Example Consider the netlist shown in Fig. 1.
The netlist corresponds to the s27 circuit from the ISCAS’89
sequential benchmark suite [13]. Two gates, NAND gate U8

978-1-5386-3093-8/17/$31.00 ©2017 IEEE 33

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 17,2023 at 07:06:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: ISCAS s27 sequential benchmark circuit with two camouflaged gates, G1 and G2.

and a NOR gate U9 have each been implemented using a
camouflaged standard cell. We assume that the camouflaged
standard cell can implement either a NAND or a NOR gate.
The primary output W of the circuit depends on both the
primary inputs (A, B, C, and D) and the state of the flip-
flops. We will assume, without any loss of generality, that all
flip-flops are initially set using a global (re)set signal.

As shown in Fig. 1, an attacker with full scan access can
set the output of each flip-flop to any desired value, and can
thus treat flip-flop outputs as new primary inputs (inputs E,
F and G). Similarly, the attacker can scan out the the input
of each flip-flop, and can thus treat flip-flop inputs as new
primary outputs (outputs X, Y and Z). The SAT attack, or in
fact even the less powerful logic testing based attack proposed
by Rajendran et al. [6], can be used to decamouflage the
resulting combinational netlist. Fig. 1 shows two inputs that
are sufficient to decamouflage gates U8 and U9; the first input
reveals the identity of U8 while the second reveals the identity
of U9.

Now consider an attacker without scan access. The attacker
can no longer control flip-flop outputs or observe flip-flip
inputs. To apply the SAT attack, an attacker can treat the
sequential circuit as a single-stage combinational circuit by
repeatedly resetting the flip-flops, applying primary inputs A,
B, C and D, and observing the primary output W . Unfortu-
nately, this strategy does not work. As shown in Fig. 2, primary
output W equals 0 regardless of the identity of camouflaged
gates U8 and U9.

Yet, as shown in Fig. 2, applying a sequence of two inputs
recovers the correct identities of the two camouflaged gates.
That is, the output of the FSM after the second input is applied
is 1 if and only if gate U8 is a NAND and gate U9 is a NOR.
In general, we note that an attacker might require not only one
but multiple input sequences to reverse engineer camouflaged
sequential circuits without scan access. Finding a set of input
sequences that is sufficient to decamouflage the netlist is the
goal of our attack.

In general, removing scan access from a camouflaged
sequential circuit makes the reverse engineering problem more
challenging for several reasons. For one, an attacker with scan
access can arbitrarily set the state of the sequential circuit to
states that help discriminate the identities of camouflaged gates
(as in the example above). On the other hand, an attacker
without scan access must apply a sequence of inputs that
lead the sequential circuit to the desired state. However, the
input sequence itself depends on the identities of camouflaged
gates. Second, an attacker without scan access only observes
the primary outputs and must infer the next state outputs

computationally. Given these challenges, a natural question
that arises is the following: does restricting scan chain access
for camouflaged sequential circuits enhance their security
against reverse engineering attacks? Our new attack seeks to
answer this question both foundationally and empirically.

Our Contributions In this paper, we make the following novel
contributions.

• We introduce the first attack methodology to decamou-
flage sequential circuits without access to internal state
of the flip-flops. Our attack searches iteratively for
input sequences; each new input sequence eliminates
one or more remaining decamouflaging solutions till
only correct completions/solutions are remaining.

• We characterize the computational complexity of two
important sub-problems in our attack procedure: is a
given set of input sequences sufficient to decamouflage
the netlist (DISC-SET-SEQ-DEC), and finding a comple-
tion that is consistent with a set of input sequences
(COMPLETION-DEC). We show that the former problem
is in PSPACE, while the latter is NP. Consequently,
our attack uses a model checker to find new input
sequences, to decide when to terminate and to identify
correct completions.

• We propose a practical attack methodology that uti-
lizes a bounded model checker and sufficient condi-
tions for the DISC-SET-SEQ-DEC problem to reduce the
run-time of the attack.

• Our experimental results speak to the strength of
our attack; we are able to decamouflage a sequential
benchmark that represents a part of the VIPER proces-
sor netlist with more than 5000 gates in a matter of
hours. For benchmarks which our attack fails to fully
decamouflage, we still correctly decamouflage up to
30 out of 32 camouflaged gates.

II. RELATED WORK

Techniques for extracting the underlying netlist of inte-
grated circuits via chemical etching, delayering and scanning
electron microscopy (SEM) are offered by companies like
Chipworks [1] and Degate [14] as part of their commercial
reverse-engineering services. These companies also develop
and offer software tools to aid in the process of circuit
extraction. Torrence et al. [15] provide a detailed overview
of the IC reverse engineering process.

Camouflaging technology aims to protect against the mis-
use of these IC reverse-engineering techniques for piracy and

34

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 17,2023 at 07:06:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The two states in the FSMs corresponding to the correct
decamouflaging solution and incorrect solutions, respectively,
for the circuit in Fig. 1.

copyright infringement. Several proposals have been made,
both in academia and industry, for implementing camouflaged
cells for use in ASIC processes. These include dummy-contact-
based camouflaged cells [2], [8], [16] as well as threshold-
voltage dependent gates [5], [8].

Because camouflaged standard cells incur area, delay and
power overheads, recent research has focused on determining
which gates to camouflage to maximize security. However, all
of the work has considered camouflaging only combinational
circuits, or equivalently, assumed sequential circuits in which
the attacker has scan access. Rajendran et al. [6] showed
that randomly selecting gates to camouflage is vulnerable to
VLSI testing based attacks, and proposed a new selection
scheme that tries to maximize the number of non-resolvable
gates. However, this scheme was broken by El Massad [9]
and Subramanyan et al.’s SAT attacks. In response to these
attacks, [7] and [8] concurrently developed SAT-attack resilient
schemes that try to ensure that discriminating sets are expo-
nentially sized. However, as acknowledged by the authors,
these schemes also come with a fundamental trade-off: the
output corruptability (or error rate) of these schemes is low;
that is, incorrect completions agree with correct completions
on almost all inputs.

In this paper, we seek to analyze the security of camou-
flaging schemes that purport to defend against SAT attacks
in a different way, i.e., by removing access to scan chains
(instead of reducing output corruptability/error rate as in the
schemes proposed by [7] and [8]). While our new attack is
successful on a range of benchmarks, we also find that there
are some benchmarks whose security is enhanced by removing
scan access.

III. ATTACK PROCEDURE

In this section, we describe our attack procedure. We first
precisely describe the attack objective and introduce some
notation that aids our exposition. Then, we define two com-
putational problems that form the foundation of our procedure
and characterize their computational complexity. Finally, we
describe how the procedure works, and the practical choices
we made while designing the attack.

A. Problem Formulation

As noted before, we assume that the attacker obtains two
copies of the IC. The attacker use the first copy as a black box
and exercises it with inputs. Let C represent the black-box IC.
The attacker uses chemical etching and imaging to extract the
netlist of the second IC — let C refer to the extracted netlist.
A subset of gates in C are camouflaged.

Let m be the number of primary inputs, n be the number
of primary outputs, k be the number of camouflaged gates and
l be the number of flip-flops (bits of internal state) in C (and
C). For instance, in Fig. 1, m = 4, n = 1, k = 2 and l = 3.
We assume, without loss of generality, that each camouflaged
gate in the IC implements one of t Boolean functions. In
the example in Fig. 1, for instance, t = 2 because each
camouflaged gate is either a NAND or a NOR. A completion
X : {1, 2, . . . , k} → {1, 2, . . . , t} assigns a Boolean function
to each camouflaged gate in C. Given a completion X of C,
we denote the completed circuit by CX .

Now consider a sequence of inputs I = (i0, i1, . . . , ip−1)
of length p applied to C starting from the initial reset state,
s0. Here, i0 is the input applied in the first time step, i1 is the
input applied in the second time step, and so on. Let C(I) =
(�0, �1, . . . , �p) denote the sequence of outputs that C produces
for input sequence I .

Similarly, for a completion X of C, let CX(I) =
(o0, o1, . . . , op) denote the sequence of outputs produced by
circuit CX for sequence I , assuming as above that inputs are
applied starting from the initial reset state, s0.

Let I denote the set of all input sequences of length 2l,
which we refer to as the universal set of input sequences. Given
C and C, the goal of our attack is to find a completion X∗
such that

∀I ∈ I, CX∗(I) = C(I), (1)

that is, we seek an assignment X∗ of Boolean functionalities
to camouflaged gates such that the outputs of the completed
netlist, CX∗ agree with outputs of the black-box circuit C on
all input sequences of length 2l. Equivalently, we seek an X∗
such that CX∗ is sequentially equivalent to C. We call such
a completion a correct completion. We note that a correct
completion is not necessarily unique. However, as we find
any correct completion, it means we have successfully reverse-
engineered (the Boolean functionality of) C.

B. Foundations of Our Attack

In this section, we define two decision problems that form
the foundation of our attack procedure. We start by introducing
the notion of a discriminating set of input sequences, which
generalizes the notion of a discriminating set of inputs that
was introduced by El Massad et al. [9] in the context of
decamouflaging combinational circuits.

Definition 1. A set of input sequences I = {I0, I1, . . . , In} is
called discriminating if every completion X that satisfies

CX(Ij) = C(Ij), ∀j ∈ {1, . . . , n}
is a correct completion.

35

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 17,2023 at 07:06:11 UTC from IEEE Xplore. Restrictions apply.

We now articulate the problem of deciding whether a set
of input sequences is discriminating for a sequential circuit,
and identify the computational complexity class to which the
problem belongs.

Definition 2. We define DISC-SET-SEQ-DEC to be the following
decision problem. Given the following three inputs: (i) a
camouflaged circuit C, (ii) I, a set of input sequences, and
(iii) the set of outputs obtained from applying input sequences
in I to the black-box circuit, each time starting from state s0,
i.e., C(I) = {C(I1), . . . , C(In)}, where I = {I1, . . . , In}. Is I
a discriminating set for C?

Theorem 1. DISC-SET-SEQ-DEC is in PSPACE.

The proof for the above theorem is in the appendix. We
remark on the significance of this result below.

Remark. The fact that DISC-SET-SEQ-DEC is in PSPACE
suggests that a viable strategy for tackling the problem is to
reduce it to model checking which is known to be complete for
PSPACE. This is exactly what we do in our attack procedure,
as we describe in Section III-C.

Remark. The corresponding decision problem for camou-
flaged combinational circuits, i.e., whether a given set of inputs
(note, not input sequences) is discriminating, was found to
be in the complexity class co-NP, which is contained in
PSPACE.

We next define a problem that captures the computational
task of finding a correct completion given a discriminating set
of input sequences for a camouflaged circuit.

Definition 3. We define COMPLETION-DEC to be the following
decision problem. Given the following three inputs: (i) a
camouflaged circuit C, (ii) I, a set of input sequences, and
(iii) the outputs obtained from applying inputs in I on the
black-box circuit, i.e., C(I). Does there exist a completion X
such that ∀I ∈ I, CX(i) = C(I)?
Theorem 2. COMPLETION-DEC is in NP.

Proof: A certificate for COMPLETION-DEC is a completion
X such that CX agrees with the black-box circuit on input
sequences in I. X is polynomially sized in the input to
COMPLETION-DEC (X can be encoded using k log2(t) bits).
Verifying that CX agrees with the black box on sequences
in I can be done in time O(|I||C|) which is polynomial in the
size of the input.

We note here that the relevance of COMPLETION-DEC is that it
yields a correct completion (as a certificate) when the input to
the problem is a discriminating set of input sequences. The
theorem implies that one can reduce COMPLETION-DEC to a
problem that is complete for NP, in particular, to CNF-SAT,
and then use an off-the-shelf SAT solver for the resulting
SAT instance. Our reduction from DISC-SET-SEQ-DEC to the
model checking problem however facilitates an alternative and
more convenient approach for COMPLETION-DEC, as we describe
below in Section III-C.

C. Practical Attack Procedure

Our attack proceeds iteratively: we maintain a set of input
sequences I that is initially empty. In each iteration, we add

one (or more) new input sequences to the set. We stop when
we determine that our set of input sequences is discriminating.

However, a naive implementation of this procedure would
make a call to an unbounded model checker in each iteration,
that is, a model checker that searches for input sequences of
arbitrary length. Unfortunately, calls to an unbounded model
checker can be time consuming. Instead, we add new input
sequences of bounded length (using a bounded model checker),
and increase the bound only when needed. Further, instead
of directly calling an unbounded model checker to decide
if the current set of input sequences is discriminating (the
termination condition for our procedure), we first check two
simpler sufficient conditions for termination. Our refined attack
procedure is described below.

1) Finding New Input Sequences: To find new input se-
quences to add to our set, we construct a solver MBMC for
DISC-SET-SEQ-DEC by reducing DISC-SET-SEQ-DEC to a bounded
model checking problem. Given C, I, and C(I) as defined
in Definition 2, and a parameter b that specifies the model
checking bound, MBMC returns true if and only if for
any two completions X1 and X2, and every input sequence
I ∈ {0, 1}b, the following implication is true:

CX1
(I) = CX2

(I) = C(I) =⇒ CX1
(I) = CX2

(I).

Note that if MBMC returns true, it does not necessarily mean
that the given set I is indeed a discriminating set of input
sequences for our camouflaged circuit. It means only that the
solver is unable to find a new input sequence of length at most
b that helps to eliminate any of the remaining completions.

If MBMC returns false on the other hand, it returns,
two completions X1 and X2 and a new input sequence Ĩ of
length at most b such that CX1

(I) = CX2
(I) = C(I) for

all I ∈ I, but CX1
(Ĩ)) �= CX2

(Ĩ), i.e., CX1
and CX2

agree
with the black-box circuit on input sequences in I, but produce
different outputs for input sequence Ĩ .

We call MBMC at every iteration in our algorithm; passing
it our camouflaged circuit, our current set of input sequences,
and the output of the black-box circuit for each sequence in
the set. If MBMC returns with a sequence Ĩ , we add Ĩ to our
set of input sequences.

2) Termination Criteria: As we stated previously, our
MBMC solver cannot decide whether a set of input sequences
I is discriminating. For this, we need to call an unbounded
model checker. However, before calling the unbounded model
checker, we check for two conditions that are sufficient to show
that I is discriminating. The intuition behind performing these
checks before calling an unbounded model checker is that we
expect them to be computationally less time consuming.

1) Unique Completion (UC): We check to see if there
is only one remaining completion that agrees with
the black-box circuit on the current set of input
sequences. Specifically, we try to find two distinct
completions that agree with the black-box circuit on
the current set of input sequences, i.e. we try to find
two completions X1 and X2 such that

CX1
(I) = CX2

(I) = C(I) and X1 �= X2

36

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 17,2023 at 07:06:11 UTC from IEEE Xplore. Restrictions apply.

Proposition 1. If no such X1 and X2 exist, then I
is a discriminating set for C.

Proof: Follows immediately from the definition
of a discriminating set of input sequences.

2) Combinational Equivalence (CE) Next, we check
whether all completions that agree with the black-
box circuit on the current set of input sequences
are combinationally equivalent with respect to both
output and next state function. That is, if we denote
by C̃X(i, s) = (o, s′) the pair of output o and next
state s′ of completed circuit CX when in state s, and
at the application of input i, we ask whether

CX1
(I) = CX2

(I) = C(I) =⇒
C̃X1

(i, s) = C̃X2
(i, s) ∀i ∈ {0, 1}m, s ∈ {0, 1}l.

(2)

Proposition 2. If Condition (2) holds for set I and
camouflaged circuit C, then I is a discriminating set
for C.

Proof: Since C̃X1
(i, s) = C̃X2

(i, s) for all
possible inputs i and all possible states s, it follows
that CX1(I) = CX2

(I) for every input sequence I .
Thus, I is discriminating for C.
We check Condition (2) by calling a solver CE that
we construct. We give it as input: (i) the camouflaged
circuit C, (ii) our current set of input sequences I,
and (iii) the outputs C(I) of the black-box circuit for
input sequences in I. If the solver returns true, we
terminate.

3) Unbounded Model Check (UMC) If the preceding
two checks fail, we finally call a solver MUMC that
we have constructed. The ‘U ’ is for “Unbounded.”
We give it as input: (i) our camouflaged circuit C,
(ii) the current set of input sequences I, and, (iii)
the outputs C(I) of the black-box circuit. The solver
MUMC , unlike MBMC , returns true if and only if
I is a discriminating set for C.

3) Finding a Correct Completion: Since the COMPLETION-
DEC problem is in NP, it can be reduced to a CNF-SAT
instance and solved using a SAT solver. However, we note that
our model checking based solver for DISC-SET-SEQ-DEC has the
property that if I is a discriminating set for C, then a correct
completion is encoded in every initial state of the model. As
such, we do not need to call an external SAT solver to find
a correct completion. We simply ask our model checker to
choose any element from the set of initial states. We denote
this procedure for the COMPLETION-DEC problem as solver N .
N takes as input the camouflaged circuit C, the current set of
input sequences I, the outputs C(I) of the black-box circuit,
and outputs a correct completion X∗ if I is discriminating.

4) Complete Algorithm: Our complete algorithm is ex-
pressed as Algorithm 1. In the algorithm, we start with an
initial bound b = 0 for our BMC solver, i.e., MBMC . At every
iteration, if we determine that we need to continue, i.e., all
three checks described in the previous section fail, we increase
the value of b by a fixed increment bmc inc, and we continue
until at least one of the three checks succeeds. At the end,
once we arrive at a discriminating set of input sequences for
our camouflaged circuit, we employ the technique described
in Section III-C3 to find a correct completion for our circuit.

Algorithm 1: Scan-Chain-Free Decamouflaging.

1 I ← ∅, b ← 0
2 while true do
3 b ← b+ bmc incr

4
〈
X1, X2, Ĩ

〉
← MBMC(C, I, C(I), b)

5 if
〈
X1, X2, Ĩ

〉
�= true then I ← I ∪ Ĩ

6 else if UC (C, I, C(I)) or CE (C, I, C(I)) or
MUMC (C, I, C(I)) then break

7 return N(C, I, C(I))

D. Implementation of Solvers

We now describe how the solvers referred to in the pre-
vious section are implemented using a model checker. Model
checkers take as input a model of an FSM represented as a
Kripke structure. We begin by describing an FSM model for
the camouflaged circuit C, and the Kripke structure that we
use as input for the model checker.

Corresponding to each completion X of circuit C is an
FSM (I,O,S, s0, σx, ωx) where:

• I = {0, 1}m is the input alphabet of the FSM, the set
of all possible inputs,

• O = {0, 1}n is the output alphabet of the FSM, the
set of all possible outputs,

• S = {0, 1}l is the set of states of the FSM, a set of
all l-bit Boolean vectors,

• s0 ∈ S, the initial state of the black-box circuit,

• σX is the state-transition function, σX : S × I → S ,

• ωX is the output function, ω : S × I → O.

For an input sequence I = (i0, i1, . . .), we can write CX(I)
in terms of σX and ωX as follows:

CX(I) = (ωX(i0, s0), ωX(i1, σX(s0, i0)), . . .)

Our MUMC solver takes an instance 〈C, I, C(I)〉 of DISC-SET-
SEQ-DEC and transforms it into a model checking instance as
follows. Let X = {0, . . . , t − 1}k be the set of all possible
completions. We define a set of atomic propositions AP to
be a singleton, consisting of an atomic proposition equiv,
the semantics of which we clarify below. We build a Kripke
structure M over AP from the tuple 〈C, I, C(I)〉 that is input
to the DISC-SET-SEQ-DEC problem. The characteristics of M
are as follows:

• The set of initial states of M is S × X × S ×
X × I, i.e., any state in M is a 4-tuple of the form
(s1, X1, s2, X2, i) where s1 and s2 are l-bit vectors,
X1 and X2 are completions, and i is a m-bit vector
representing an input.

• The set of initial states of M is {(s0, X1, s0, X2, i) :
X1, X2 ∈ X , i ∈ I and CX1

(I) = CX2
(I) =

C(I)}.

• M ’s transition relation, R is defined as fol-
lows: R = ((s1, X1, s2, X2, i), (s

′
1, X1, s

′
2, X2, i

′)) :
s1, s2, s

′
1, s

′
2 ∈ S, X1, X2 ∈ X , i, i′ ∈

37

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 17,2023 at 07:06:11 UTC from IEEE Xplore. Restrictions apply.

I such that σX1
(i, s1) = s′1 and σX2

(i, s2) =
s′2}. That is, the system can transition from a state
(s1, X1, s2, X2, i) to a state (s′1, X1, s

′
2, X2, i

′) if and
only if when CX1 and CX2 are in states s1 and s2,
respectively, and we apply input i to both circuits, CX1

and CX1 transition to states s′1 and s′2 respectively.
The transition relation also requires that X1 and X2

retain their initial values throughout the evolution of
the model.

• M ’s labeling function, L, is defined as follows:
L(s1, X1, s2, X2, i) = {equiv} if ωX1

(s1, i) =
ωX2

(s2, i), otherwise L(s1, X1, s2, X2, i) = ∅,
i.e., the proposition equiv is true in a state
(s1, X1, s2, X2, i) if and only if when CX1 and CX2

are in states s1 and s2, respectively, and we apply
input i to both circuits, CX1 and CX1 produce the
same output.

We have the following proposition:

Proposition 3. For a given DISC-SET-SEQ-DEC instance
〈C, I, C(I)〉, if the structure M constructed as above satisfies
the specification G equiv, that is, for every i ∈ I and
every X1, X2 ∈ X , M, (s0, X1, s0, X2, i) |= G equiv, then
〈C, I, C(I)〉 is a true instance of DISC-SET-SEQ-DEC, that is, I
is a discriminating set for C.

Proof: (Sketch) We can interpret the structure M as
follows. M represents the reachable states of a system that
consists of two completed circuits CX1

and CX2
of C that

agree with the black-box circuit on every input sequence in
I. The two completions are simultaneously exercised at every
step with the same input. The equiv proposition holds at any
state if the two completions produce the same output for the
input applied in that state. If the equiv proposition holds on
every path of M , as expressed by the linear temporal logic
formula G equiv, then we have that any two such CX1

and CX2
are equivalent. Since a correct completion has to

necessarily agree with the black-box circuit on every input se-
quence, it follows that both X1 and X2 are equivalent to some
correct completion, and are therefore, by extension, correct
completions themselves. By the definition of a discriminating
set of input sequences, then, it follows that 〈C, I, C(I)〉 is a
true instance of DISC-SET-SEQ-DEC.

The above structure can be described using NuSMV’s input
language, with size at worst polynomial in the given DISC-
SET-SEQ-DEC instance. The MUMC solver thus produces a
description of the structure M corresponding to the input DISC-
SET-SEQ-DEC instance, and invokes a model checker asking to
verify the specification G equiv on M . If the model checker
says that M satisfies the specification, MUMC returns true,
otherwise MUMC parses the counterexample returned by the

model checker for a tuple
〈
X1, X2, Ĩ

〉
to be returned to the

caller, as expressed in Algorithm 1. We implement the solvers
MUC and MCE using similar calls to a model checker on
(slight variations of) the structure M .

IV. EXPERIMENTAL RESULTS

In this section, we describe our experimental results. We
begin by describing our experimental setup, and then analyze
the strength of our attack empirically.

A. Experimental Setup

We implement our attack procedure using C++ in ≈ 700
lines of code, and use NuSMV [17] as the back-end model
checker. All experiments were executed on an Intel(R) Xeon
CPU E5-2650 processor. We assume a camouflaged standard
cell library that can implement either a NAND or a NOR
function. Note that the camouflaged standard cell library in
[6] also implements XOR functions (in addition to NAND and
NOR), but we did not observe any instances of XOR in the
benchmarks that we use.

We implemented two techniques to select which gates
to camouflage: (1) the output corruptibility + non-resolvable
(OC/NR) technique proposed by [6], which is secure against
VLSI test based attacks, and (2) random selection, in which
the camouflaged gates are picked uniformly at random from
the set of eligible gates in the circuit.

We use circuits from the ISCAS’89 [13] and the ITC’99
[18] sequential benchmark suites. The characteristics of the
benchmarks in terms of the number of inputs, outputs, flip-
flops and gates is shown in Table I. More details about
these benchmarks can be found in [13] and [18]. We note
that the b14 benchmark implements a subset of the VIPER
processor. For the s38584 benchmark, all our attack runs
crashed, presumably because the model checking instances
we generated in our procedure for s38584 were too large for
NuSMV to handle. As such, we do not report any further
results for this benchmark.

B. Experimental Results

Table II shows the results of our attack on the scheme
in which gates are randomly camouflaged. We created 10
different camouflaged circuits for every benchmark, each with
a different random selection of 32 camouflaged gates. The table
plots (1) the number of discriminating input sequences, (2) the
maximum length of an input sequence in the discriminating
set, (3) the time taken by our attack, and (4) the number of
attack runs (out of 10) that were successful and, for successful
attacks, the termination condition that provided the correct
completion.

Several observations are in order. Out of 160 attacks, 135
runs were successful. We were unable to decamouflage any
instance of the s9234 benchmark, only decamouflaged one
instance of the s5378 benchmark, and seven instances of the
s400 and s444 benchmarks. On the other hand, our attack
decamouflaged all instances of the b14 benchmark, one of the
largest that we tried.

We hypothesize that even though the s400 and s444 bench-
marks are small, they are hard to decamouflage because they
have a relatively small number of primary inputs and outputs
(3 PIs and 6 POs) compared to the number of bits of internal
state (21 FFs each). We note that our attack required relatively
long input sequences of length up to 90 for the instances in
which we successfully decamouflaged these benchmarks. We
do show in Section IV-B1, however, that on all of the instances
of s400 and s444 for which we are unsuccessful, we are able
to correctly recover at least 30 of 32 camouflaged gates.

Another interesting observation is that our UC and CE
termination conditions that try to avoid calls to an unbounded

38

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 17,2023 at 07:06:11 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Benchmark characteristics.

B’mark #PIs #POs #FFs #Gates

s344 9 11 15 160
s349 9 11 15 161
s382 3 6 21 158
s400 3 6 21 162
s444 3 6 21 181
s526 3 6 21 193
s820 18 19 5 289
s832 18 19 5 287
s953 16 23 29 395
s1196 14 14 18 529
s5378 35 49 179 2779
s9234 19 22 228 5597
s38584 12 278 1452 19253
b04 11 8 66 628
b08 9 4 21 183
b14 32 54 245 5678

TABLE II: Results of proposed attack on FSMs camouflaged
using random selection. Also noted are the termination con-
ditions: unique completion (UC), combinational equivalence
(CE) and unbounded model checker (UMC).

B’Mark # Disc Inputs Max Steps Time (s) Termination

min max min max min max UC/CE/UMC

s344 3 5 10 10 11 37 10/0/0

s349 3 7 10 10 15 69 10/0/0

s382 25 36 50 60 3482 41129 10/0/0

s400 18 34 50 90 4921 526499 6/0/1

s444 16 35 50 90 3379 52984 2/0/5

s510 7 15 30 40 300 29121 10/0/0

s526 29 39 120 120 37979 139252 10/0/0

s820 14 20 10 10 506 1030 10/0/0

s832 12 21 10 10 370 1211 10/0/0

s953 10 22 10 10 365 1709 10/0/0

s1196 14 44 10 10 795 2386 10/0/0

s5378 7 - 30 - 1350 - 0/1/0

s9234 - - - - - - 0/0/0

b04 4 9 10 10 31 151 10/0/0

b08 26 117 20 20 619 10527 10/0/0

b14 14 21 10 10 14308 34273 10/0/0

model checker enhance success of our attack. For example, on
the one instance of c5378 that we decmaouflaged, we were
able to terminate because our combinational equivalence (CE)
check succeeded quickly; a call to unbounded model checker
to decide whether to terminate was still running after several
hours.

Table III shows the same data, but this time for the OC/NR
based camouflaging approach [6] and are qualitatively similar.
Since the procedure is deterministic, we generate only one
camouflaged netlist for each benchmark. It is interesting to
note that OC/NR does not seem to provide any additional
security against the model checking attack compared to the
random camouflaging scheme.

Our empirical attack results provide mixed evidence as
to our central question: does blocking access to scan chains
increase the immunity of camouflaged sequential circuits
against reverse engineering attacks. On the one hand, using
our proposed model checking attack, we were able to de-
camouflage relatively large benchmark circuits. On the other,
benchmarks like s5378 and s9234 have been decamouflaged in
prior work [9] assuming scan access. Withholding scan access
does seem to increase the security for these benchmarks.

TABLE III: Results of proposed attack on FSMs camouflaged
using the OC/NR technique from [6]. Also noted are the ter-
mination conditions: unique completion (UC), combinational
equivalence (CE) and unbounded model checker (UMC).

B’Mark # Disc Inputs Max Steps Time (s) Termination

s344 4 10 14 UC

s349 3 10 8 UC

s382 34 60 17713 UMC

s400 26 60 14803 UMC

s444 36 80 150569 CE

s510 13 40 703 UC

s526 29 80 13001 UC

s820 23 10 1508 UC

s832 16 10 253 UC

s953 11 10 127 UC

s1196 17 10 1150 UC

s5378 - - - -

s9234 - - - -

b04 7 10 191 UC

b08 31 20 1734 UC

b14 13 40 19026 UC

1) Partial Completions: We tried recovering the identities
of as many camouflaged gates as possible for benchmarks that
we could not successfully decamouflage every gate. We do
this using a technique similar to the one proposed in [10], i.e.,
any camouflaged gate that is assigned the same identity by all
remaining completions (those not eliminated by the set I) can
be assigned that identity. We call this a partial completion.

Based on this technique, we found that we were able to
correctly identify 30 out of 32 camouflaged gates for the six
s400 and s444 benchmark instances that we could not fully
decamouflage. Fig. 3 plots the histogram of the number of
correctly decamouflaged gates for the nine runs of the s5378
benchmark on which we were unsuccesful. We observe that be-
tween 21 and 29 out of 32 gates are correctly decamouflaged,
significantly reducing the attacker’s search space. For instance,
in the two cases where our partial completion attack recovered
29 camouflaged gates, the attacker has only 16 remaining
possibilities.

2) Impact of Number of Camouflaged Gates: So far, we
have assumed in our experiments that only 32 gates are
camouflaged. We increased the number of camouflaged gates
for the s1196 benchmark from 32 to 256 (including 10 runs for
each) and found that we are able to decamouflage the circuit
in each case. Fig. 4 plots the run-time of our attack and the
number of input sequences required to decamouflage (size of
discriminating set) each instance. An interesting observation
is that although the number of input sequences required to
decamouflage the circuit increases with increasing number of
camouflaged gates, the length of the input sequences in the
discriminating set was always at most 10.

V. CONCLUSION

In this paper, we proposed the first attack methodology for
reverse-engineering camouflaged sequential circuits without
assuming that the attacker has scan chain access. We have
identified the computational complexity of two underlying sub-
problems on which our attack procedure relies, and show that
the problem of determining when a given set of input se-
quences is sufficient to decamouflage a circuit is in PSPACE.
Based on this observation, we have developed a practical

39

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 17,2023 at 07:06:11 UTC from IEEE Xplore. Restrictions apply.

 0

 1

 2

 3

 4

 5

21 22 23 24 25 26 27 28 29

Fr
eq

ue
nc

y

partially decamou aged gates

Fig. 3: Histogram of number of partially decamouflaged gates
for the s5378 benchmark across nine runs on which our attack
did not successfully recover every camouflaged gate.

 0

 50

 100

 150

 200

 250

 300

 32 64 128 256

T
im

e
to

 d
ec

am
ou

fl
ag

e
(m

)

Number of camouflaged gates

(a) Attack time.

 10

 20

 30

 40

 50

 60

 32 64 128 256

Si
ze

 o
f

D
is

cr
im

in
at

in
g

Se
t

Number of camouflaged gates

(b) Discriminating set size.

Fig. 4: Effect of increasing number of camouflaged gates on
attack performance on the s1196 benchmark on (a) attack run-
time, and (b) size of the discriminating set of input sequences.

and scalable attack procedure that makes iterative calls to a
bounded model checker.

Our attack is effective on the majority of the benchmarks
we tested, including a large sequential benchmark with more
than 5000 gates. However, there are benchmarks that the attack
does not fully decamouflage, suggesting that removing scan
access may indeed be helpful in increasing the resiliency of
some circuits against reverse engineering attacks. The attack
motivates the need for further research into camouflaging
mechanisms for sequential circuits that leverage the attacker’s
lack of access to internal state to further enhance resilience
against our attack.

REFERENCES

[1] Chipworks. Reverse Engineering Software. http://www.
chipworks.com/en/technical-competitive-analysis/resources/
reerse-engineering-software. Last accessed May 2014.

[2] SypherMedia. Syphermedia library circuit camouflage technology. http:
//www.smi.tv/solutions.htm. Last accessed May 2014.

[3] Lawrence E Larson. Convertible multi-function microelectronic logic
gate structure and method of fabricating the same, September 8 1992.
US Patent 5,146,117.

[4] Robert H Walden. Dynamic circuit disguise for microelectronic inte-
grated digital logic circuits, April 13 1993. US Patent 5,202,591.

[5] Maria I Mera Collantes, Mohamed El Massad, and Siddharth Garg.
Threshold-dependent camouflaged cells to secure circuits against re-
verse engineering attacks. In VLSI (ISVLSI), 2016 IEEE Computer
Society Annual Symposium on, pages 443–448. IEEE, 2016.

[6] Jeyavijayan Rajendran, Michael Sam, Ozgur Sinanoglu, and Ramesh
Karri. Security analysis of integrated circuit camouflaging. In Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’13, pages 709–720, New York, NY,
USA, 2013. ACM.

[7] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and
Jeyavijayan Rajendran. Camoperturb: secure IC camouflaging for
minterm protection. In Computer-Aided Design (ICCAD), 2016
IEEE/ACM International Conference on, pages 1–8. IEEE, 2016.

[8] Meng Li, Kaveh Shamsi, Travis Meade, Zheng Zhao, Bei Yu, Yier
Jin, and David Z Pan. Provably secure camouflaging strategy for
ic protection. In Computer-Aided Design (ICCAD), 2016 IEEE/ACM
International Conference on, pages 1–8. IEEE, 2016.

[9] Mohamed El Massad, Siddharth Garg, and Mahesh V Tripunitara. In-
tegrated circuit (IC) decamouflaging: reverse engineering camouflaged
ICs within minutes. In NDSS, 2015.

[10] Pramod Subramanyan, Sayak Ray, and Sharad Malik. Evaluating the
security of logic encryption algorithms. In Hardware Oriented Security
and Trust (HOST), 2015 IEEE International Symposium on, pages 137–
143. IEEE, 2015.

[11] Duo Liu, Cunxi Yu, Xiangyu Zhang, and Daniel Holcomb. Oracle-
guided incremental SAT solving to reverse engineer camouflaged logic
circuits. In Proceedings of the 2016 Conference on Design, Automation
& Test in Europe, pages 433–438. EDA Consortium, 2016.

[12] Jeremy Lee, M Tebranipoor, and Jim Plusquellic. A low-cost solution
for protecting IPs against scan-based side-channel attacks. In VLSI Test
Symposium, 2006. Proceedings. 24th IEEE, pages 6–pp. IEEE, 2006.

[13] Franc Brglez, David Bryan, and Krzysztof Kozminski. Combinational
profiles of sequential benchmark circuits. In Circuits and Systems,
1989., IEEE International Symposium on, pages 1929–1934. IEEE,
1989.

[14] Degate. Reverse engineering integrated circuits with degate. http://
www.degate.org/documentation/. Last accessed May 2014.

[15] Randy Torrance and Dick James. The state-of-the-art in IC reverse
engineering. In Cryptographic Hardware and Embedded Systems-CHES
2009, pages 363–381. Springer, 2009.

[16] Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu, and Ramesh
Karri. Security analysis of logic obfuscation. In Proceedings of the 49th
Annual Design Automation Conference, pages 83–89. ACM, 2012.

[17] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco
Roveri. NuSMV: a new symbolic model checker. International Journal
on Software Tools for Technology Transfer, 2(4):410–425, 2000.

[18] Fulvio Corno, Matteo Sonza Reorda, and Giovanni Squillero. RT-level
ITC’99 benchmarks and first ATPG results. IEEE Design & Test of
computers, 17(3):44–53, 2000.

APPENDIX

Proof of Theorem 1: We prove that DISC-SET-SEQ-DEC

is in PSPACE by describing an algorithm for solving DISC-
SET-SEQ-DEC that requires an amount of space that is at worse
polynomial in the size of the input instance. Recall that the
input to DISC-SET-SEQ-DEC is a tuple C, 〈C, I,O〉 where C is
a camouflaged circuit, I is a set of input sequences, and O is
a set of output sequences corresponding to an input sequence
in I. A precondition on C, 〈I〉 is that there exists at least one
completion X of C such that CX(I) = O. The algorithm we
propose is as follows:

For every pair of completions X1 and X2 in X , we check
whether CX1

(I) = O and CX2
(I) = O. This can be done

using O(|C|) space, where the size of C is the number of
inputs of wires plus the number of gates in C. If any of X1

or X2 do not satisfy the condition, we move on to the next
pair; otherwise, we check whether CX1

and CX2
agree with

each other on every input sequence of length l. Again, this
can be done in O(l|C|) space. If we find an input sequence
of length l for which CX1 and CX2 produce different outputs,
we return false. If we exhaust every pair of completions in
X , we return true.

40

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 17,2023 at 07:06:11 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

